Colorado State University (Fort Collins, CO, USA) in 2018. There, she gained experience working as a graduate teaching assistant for computer aided engineering, biomedical engineering capstone design, and biomedical engineering introductory classes. She also served as a Grad- uate Teaching Fellow for the Walter Scott, Jr. College of Engineering during the 2016/2017 academic year. Nicole is currently an instructional post-doctoral fellow in the Transforming Engineering Education Laboratory within the Biomedical Engineering Department at the University of Michigan. Through this fellowship, she spent the 2019/2020 academic year teaching and assisting in curriculum development at Shantou University (Guangdong Province
, while others do not.Some projects are much more defined with proposals, schedules, and budgets as a part of theprocess to the final design. With all these skillsets on display this is a good place for faculty toidentify the potential needs and/or strengths of a student with an ASD. Most students with anASD solve problems in creative, unconventional ways12. The ambiguous project may be an areafor the ASD student to research and thrive, while some ASD students will appreciate the moredirected project with rules and requirements. However, the scope of the guided project may beoverwhelming if presented all at once. A large project assignment should be broken down intosmaller steps/assignments with varying due dates. For example, the instructor
Education, Postsecondary Educational Leadership: Specialization in Student Affairs from San Diego State University.Prof. Olivia A. Graeve, University of California, San Diego Prof. Graeve joined the University of California, San Diego, in 2012, and is currently Professor in the Department of Mechanical and Aerospace Engineering, Director of the CaliBaja Center for Resilient Ma- terials and Systems, and Faculty Director of the IDEA Engineering Student Center. Prof. Graeve holds a Ph.D. in Materials Science and Engineering from the University of California, Davis, and a Bachelor’s degree in Structural Engineering from the University of California, San Diego. Her area of research fo- cuses on the design and processing of
, 7 “Include design considerations appropriate to the discipline and degree level such as: industry and engineering standards and codes; public safety and health; and local and global impact of engineering solutions on individuals, organizations and society.” [18].NCEES recently passed a motion by a 45 to 20 margin to update their Position and PolicyStatement PS 35, Future Education Requirements for Engineering Licensure, to include4-yr ET graduates. The pathways to licensure are currently defined as: “A bachelor’s degree in engineering from a program accredited by EAC/ABET and a master’s or earned doctoral degree in engineering in the same technical area from an institution that offers EAC/ABET
sophomore year, and ultimate graduation years later. The research question thatmight be addressed is: 1. How do curricular elements of a first year Cohort program impactretention of students through sophomore year and graduation? For now, while more detailedmapping of STRIDE activities to student performance and retention could be interesting,collection of aggregate performance data and reporting of Cohort activities is more practical, anduseful at this stage. It is also helpful to try and identify if there are differences in the impact onstudents from different disciplines. The present paper focuses on the impact on engineeringstudents versus that on non-engineering students.CONCLUSIONSThe engineering students in Cohort 2 of STRIDE – a First-Year
theworkforce [6]. There are many explanations of individual excellence and entrepreneurialmindset [7,8, 9] and multiple studies about engineering students [10,11,12] with an emphasison a high need for achievement and potential for break-through innovation [13]. Since the late1990’s engineers and designers have been exploring moods and feelings and their connectionto better solutions [14]. And while research links entrepreneurial status to personality theory[15] and personality to leadership [16], few studies focus on the impact of emotion oninnovative success. This paper aims to begin filling that gap with a preliminary experiment toshow how students experience a story of innovation. The experiment is inspired by Radcliffe President Mattina
engineering, itsintroductory fundamental courses such as mechanics of materials, dynamics, and introduction tocircuit are easy targets of the practice of “herding” students into large classes. This practice canpose quite a difficult adjustment for freshman and sophomore college students. Cooper and Robinson14 artfully expressed the potentially dangerous consequence ofsubjecting freshman and sophomore college students to large lecture classes: A growing body of research points to the value of undergraduate learning environments that set high expectations, promote active and interactive learning, and give students personal validation and frequent feedback on their work. These settings and practices are especially
similar ideas as presented here. One successful aspect of the experiment is that the 3Dmodel provides a more authentic emulation of real-world engineering practice. Students mayperuse the views and orbit the model in 3D to understand the nature of the problem. This type ofengagement, inquiry, and discovery is typically not possible in traditional paper exams.Additionally, by modeling the context in 3D, the exam designer is forced to fully develop theproblem in a way that is not typically done for an on-paper exam. For example, consider theunusual cross-section. The unconventional shape was strategically chosen to limit students’ability to use online moment of inertia solvers during the take-home exam. However, the unusualshape of the cross
volunteerism have been recognized forroughly three decades (Astin 1985), which has led an increasing number of higher educationinstitutions to establish numerous community service and service learning offices on theircampuses (Hall 2005; Ellis 1978; Enos 2002). To increase participation in volunteer activities many universities have adopted mandatoryapproaches such as including community service hours in graduation requirements. However,research has shown mandatory volunteer work impedes long-term and impactful servicelearning; instead, voluntary approaches to increase community service for college campuses aremore effective at creating an enriching service learning experience (Stukas et al. 1999). While avoluntary participation model may
four informational BR200 modules in Moodle. These enhance-ments were in place for the Fall 2020 and Spring 2021 sessions. While the instructor rated him-self as very computer-literate, this RISE course proved very challenging. That continued whenthe instructor implemented more RISE principles during the compressed 12-week fall 2020BR200 course. It truly was like teaching a new course for the first time!RISE introduced faculty to the tools needed to skillfully design and deliver courses for this nextphase in higher education.7 Dynamic facilitators who were experts in online learning led it.Faculty built elements of their online course(s) while learning and using research-informed,instructional best practices. Workshop concepts were grounded in
. Her work dwells into learning in informal settings such as summer camps, military experiences, and extra-curricular activities. Other research interests involve validation of CFD models for aerospace applications as well as optimizing efficiency of thermal-fluid systems.Dr. Melissa L. Whitson, University of New Haven Associate Professor of PsychologyDr. Daniel Patrick Schrage, Georgia Institute of Technology Dr. Schrage is a professor in the School of AE at Georgia Tech and the Director of the Vertical Lift Research Center of Excellence (VLRCOE). Over the past 30 years he has established the graduate pro- gram in Aerospace Systems Design and helped focus it for student lifelong learning which has included
individual belongs toprofessionally, and/or voluntarily. Therefore, ethical conduct and practice is a traditional cornerstone ofeducation and the professional conduct and development of workforce in all industries.Today, engineers play a crucial role in the development of the direction of technology, research, economicgrowth and thereby impact on the safety, wellbeing, and lives of people. Engineers make decisions or areinvolved in the decision-making and operational processes of business, government, and/or non-profitorganizations at various levels (strategic, tactical, and operational). Since engineers’ design and makesolutions available to use for dealing with the societies’ complex problems, the direct and ripple effects ofthese decision-making
externally.Tilly (1999) has noted that there is a lack of research in understanding the mechanisms forcorporations to enact reforms, including legal and regulatory requirements and leadership skillsactually enact change from the top. If employees indeed succeed in gaining more directinvolvement and participation in decision-making, how will such organizational change beaccomplished? What examples or best practices exist in the US or internationally?Amazon is known for having a tough and often punishing work culture that nonetheless,provides opportunity to create, invent, and “think big” (Kantor & Streitfeld, 2015). A degree ofsecrecy has also been identified as a trait of the company’s corporate culture. These twoqualities seem at odds with the
Paper ID #41873Coping Strategies of Minoritized Students in STEM Higher EducationMr. Nagash Clarke, Nagash Clarke is a doctoral student at the University of Michigan working with Dr. Joi-Lynn Mondisa. In his research, he examines mentoring as well as racial allyship for broadening minoritized participation in STEM higher education. He received a Bachelor’s in Chemistry from Pace University.Dr. Joi-Lynn Mondisa, University of Michigan Joi Mondisa is an Associate Professor in the Department of Industrial and Operations Engineering and an Engineering Education Faculty Member at the University of Michigan Ann Arbor
statistician who can present statistical results in lay language. She is also a storyteller through data visualization. She earned her PhD in Educational Research and Evaluation from Ohio University. During her PhD, she served as a Graduate Associate in the Statistics and Research Lab, which allowed her to practice consulting with students on their doctoral dissertations in the field of Education, especially in research design and statistical analyses. ©American Society for Engineering Education, 2023 Examining Timely Positive Interventions Utilized by First-Year Students to Improve their Course Grades in Science and Engineering Kim, S., Forney, A., Cappelli, C., Doezema, L. A., Morales, V. C., and
methods tostill convey hands-on laboratories. The definition of the role of MET students had to be revisitedin order to determine whether the solutions presented for the laboratories would meet what isexpected of MET graduates in industry. The MET professional in the area of mechatronics needsto have a thorough understanding of the hardware and software used in the automation space.They should be familiar with all technical aspects in terms of mounting and wiring systems.However, of paramount importance in their role is the ability to design an automated solution.This requires a thorough understanding of EDS. The mechatronic program at NJIT has deliveredEDS education with lectures, face-to-face labs, and the use of simulation software for
the design andmain results obtained after implementing a four-week "Entrepreneurial Vision" module withinthe curricular program of the School of Engineering bachelor's degrees of a large privateuniversity in Chile during the pandemic in the first semester of the academic year 2020.BackgroundThe Academy of Innovation and Entrepreneurship (from now on, the Academy) is a program ofthe Faculty of Engineering of the Andres Bello University of Chile, responsible for leaving anentrepreneurial hallmark among all its graduates is an original model that adapts internationalexperiences and methodologies. The Academy develops experiences through training activitiesfor students in various engineering fields, the most prominent being the semester
Paper ID #19731Promoting Computational Thinking in children Using AppsMs. Hoda Ehsan, Purdue University, West Lafayette (College of Engineering) Hoda is a Ph.D. student in the School of Engineering Education, Purdue. She received her B.S. in me- chanical engineering in Iran, and obtained her M.S. in Childhood Education and New York teaching certification from City College of New York (CUNY-CCNY). She is now a graduate research assistant on STEM+C project. Her research interests include designing informal setting for engineering learning, and promoting engineering thinking in differently abled students in informal and formal
future. Her research focuses on underrepresented minority youth’s access to and persistence in STEM pathways. She holds a B.A. in Anthropology and Community Health and an M.S. in Occupational Therapy from Tufts University.Rachel E Durham Rachel E. Durham (PhD, Sociology & Demography, Pennsylvania State University) is an Associate Professor in the School of Education at Notre Dame of Maryland University, and a Senior Fellow with the Baltimore Education Research Consortium (BERC). With a background in sociology of education, education policy, and demography, her research focuses on graduates’ transition to adulthood, career and college readiness, community schools, and research-practice partnerships.Prof
Training: The hands- are also available at a website maintained by the on training takes place on the Center for Manufacturing Research [16]. second day of the workshop and AM-WATCH participants designed and printed includes training the participants innovative/entrepreneurial work pieces during the on using Arduino or Python second day of the studio workshops and rated their coding for advanced learning practices tied to ABET Student Outcomes manufacturing applications. at the end of the programs [17]. Educational Modules: Six educational Two-day, on-ground, train-the-trainer studios modules were developed on
class named “Actuators and SensorsApplication in Robotics” in the department of MET at the New York City College of Technologyin which there are three levels of robotics classes 15,16. In this class, the students are assumed tolearn the applications of popular sensors and actuators and study wireless communication devicesand protocols. Then, they can synthesize the knowledge of fundamental STEM, the introductionlevel of robotics, and design to develop a complicated project. As discussed above, the classmainly focuses on how to understand the theories through practical applications indirectly insteadof how to deliver the theories directly. The educational aim specializes in robotics technology toprepare for career-based classes and laboratories
an understanding of how current undergraduate engineering students andengineering faculty understand power and power dynamics, the research team developed a set ofworkshops for students and faculty to co-design inclusive practices while exploring their ownidentities with respect to power. Part of this study was exploring the possibility of consciousnessraising for students and faculty in their understanding of power.The participants were recruited from the College of Engineering at a large public university inthe Pacific Northwest. Recruitment emails were sent to various mailing lists and students wererecruited through large courses. The final set of participants included two faculty members, onegraduate student who had served as an
turned in significantnumbers to the codification of best practices and ethical priorities. That burst of ethics-writingactivity was followed by others through the twentieth century, Davis explains, usually instigatedby moments of great growth in the profession or of notable outside pressures for self-regulation.1,2 Codes of ethics have customarily mandated rigorous, honest, and disinterestedengineering practice and depending on the sub-field, also more specific instructions regardingpertinent materials, technical processes, and commercial relations. These instruments are Page 26.1723.3essentially optimistic in projecting a desired future
confronting issues related to inclusion. The department undergoes annual review byexternal evaluators Inverness Research. The 2019 review revealed instances where students didnot feel included. These situations involved faculty, staff, and students. Since becoming aware ofthe situations, the department has spent considerable time addressing inclusivity. All facultyattended microaggression and inclusion training (see below). Inclusion training has been addedto the new vertically integrated design project courses (see below) that will be required of allstudents. One faculty piloted a syllabus that includes a policy on microaggressions andharassment. The Department has prompted University’s Center for Teaching and Learning tolead the establishment of a
Paper ID #17026Engineering Together Sustainable Communities: Sustainability Engineeringin ActionDr. Noe Vargas Hernandez, Carnegie Mellon University Noe Vargas Hernandez researches creativity and innovation in engineering design. He studies ideation methods, journaling, smartpens, and other methods and technology to aid designers improve their creativ- ity levels. He also applies his research to the design of rehabilitation devices (in which he has various patents under process) and design for sustainability.Dr. Heidi A. Taboada, University of Texas, El Paso Dr. Heidi A. Taboada is an Associate Professor in the
Learning: Research and Practice, 15:2, pp.126-138, 2018.[9] R.M. Felder and R. Brent (2017) Learner-Centered Teaching: How and Why? LearningAbstracts (League for Innovation in the Community College), 20(5), May 2017[10] P. G. Koles, A. Stolfi, N. J. Borges, S. Nelson, and D. X. Parmelee, “The impact of team-based learning on medical students' academic performance.,” Acad Med, vol. 85, no. 11, pp.1739–1745, Nov. 2010.[11] M. L. Epstein and G. M. Brosvic, “Students prefer the immediate feedback assessmenttechnique,” Psychol Rep, vol. 90, no. 3, pp. 1136–1138, Jun. 2002.[12] E. Haase, B.N. Phan, and H.R. Goldberg (2017), Molecules and Cells: Team-based andMulti-modal Learning Improves Comprehension and Increases Content Retention, 2017 ASEEAnnual
-Milwaukee.Dr. April Dukes, University of Pittsburgh April Dukes (aprila@pitt.edu) is the Faculty and Future Faculty Program Director for the Engineering Educational Research Center (EERC) and the Institutional Co-leader for Pitt-CIRTL (Center for the Inte- gration of Research, Teaching, and Learning) at the University of Pittsburgh. April studied at Winthrop University, earning a BS degree in Chemistry and BA degree in Psychology in 2000. She then completed her PhD in 2007 at the University of Pittsburgh, studying oxidative stress in in vitro models of Parkinson’s disease. During her prior graduate and postdoctoral work in neurodegeneration, April mentored several undergraduate, graduate, and clinical researchers and
year 2. Goal 5: Develop an adaptable model for implementing a STEM guided pathways approach at other community colleges. Study the effectiveness and impact of implemented strategies. Broad dissemination of project findings and best practices.STEM Success and Orientation Course Development and ImplementationHow do we teach STEM Identity?While the nuances of the development of our cohort course will be summarized below, it isimportant to begin by noting that the initial course in which SEECRS scholars were placed wasspecifically designed to develop STEM identity. This focus on identity development utilizeddiscourse based identity theory to help students envision themselves as belonging in STEM.Discourse
have shown that both graduate student (Ong et al.,2011) and faculty (Hurtado et al., 2012) women of color in STEM report frequent experiences ofgender and racial/ethnic bias. For example, Black/African American women face the stereotypeof being "aggressive" (McGee, 2016) and express low levels of feelings of belonging withinSTEM fields (Ong, 2005), factors that ultimately negatively impact mental health (McGee,2020). However, insight into disparities based on intersectional identities in STEMentrepreneurship requires research designs that integrate these broader contexts ofentrepreneurship and STEM higher education. Further, scholars have called for additionalquantitative studies that address intersecting social identities in entrepreneurship
curriculum below.1. Vertically integrated design project courses (VIDP). Our program has a strong senior designcourse sequence where seniors work for an entire academic year in teams on real projectssponsored and mentored by industry. Real industry design experience, however, was missing inthe first three years of the program. Hence, a separate design course sequence, where freshmen,sophomores, and juniors come together each spring to work on authentic design projectsmentored by practicing engineers, was added to the curriculum. In this new VIDP sequence,integrated teams consisting of freshmen, sophomores and juniors learn practice skills such asdesign principles, team dynamics, project management, communication, etc., throughexperiential learning