Paper ID #18611Work In Progress: Knowledge Integration to Understand WhyProf. Tom Chen, Colorado State University Tom Chen received his Ph.D. from the University of Edinburgh. After spending 4 years with Philips Semiconductors in Europe, he joined the Department of Electrical & Computer Engineering at Colorado State University. Prof. Chen published more than 180 journal and conference papers in the areas of analog and digital VLSI design and CAD for VLSI design. Prof. Chen served as the General Chair of 2015 IEEE Midwest Symposium on Circuits and Systems, and as the Guest Editor of IEEE Trans. on Computer- Aided
Paper ID #18147Developing a Shared Vision for Change: New results from the Revolutioniz-ing Engineering Departments Participatory Action ResearchDr. Cara Margherio, University of Washington Cara Margherio is the Senior Research Associate at the UW Center for Evaluation & Research for STEM Equity (CERSE). Cara serves as project manager for program evaluation on several NSF- and NIH-funded projects. Her research interests include community cultural wealth, counterspaces, peer mentoring, and institutional change.Dr. Elizabeth Litzler, University of Washington Elizabeth Litzler, Ph.D., is the director of the University of
STEMcareers [16, 17, 18]. Program teachers offer varied, hands-on projects in their engineeringclassrooms that are practical, but also community minded, artful, or even musical. This approachto an introduction to engineering course is theorized to attract the creative problem solver neededto succeed in the field of engineering. See Appendix A for the ENGR 102 HS teachingobjectives and learning outcomes. While the focus of this paper is gender and student self-efficacy, much more information about ENGR 102 HS in comparison to other dual creditprograms, the quality of instruction and the logistics of the EPICS High community serviceprogram and the GC DELI online units can be found in previous work by the authors [1, 15, 19,20, 21].During a given
Paper ID #18114High School Extracurricular Activities and Camps Related to Engineering,Math and Science: Do They Help Retention and Performance in Engineer-ing? (Fundamental)Dr. Nora Honken, University of Cincinnati Nora is an Assistant Professor in the Engineering Education Department at The University of Cincin- nati. She holds a PhD in Educational Leadership and Organizational Development for the University of Louisville, a MS in Industrial Engineering from Arizona State University and a BS in Industrial Engineer- ing from Virginia Tech. She also has extensive industrial experience.Dr. Patricia A. Ralston, University
pedagogical goals in mind. One goal is to provide an opportunity for students todeepen their learning of science and engineering concepts. Another goal is to experienceactivities that mimic those of an engineer. In both cases, ambassadors seem to be refining theircapacity to convey technical content in ways that appeal to specific (non-technical) audiences,which is very much aligned with the overall goals of the ambassador program. The activity design process demonstrated the potential for this aspect of ambassadortraining to further undergraduates’ thinking as subject matter experts and communicators to non-technical audiences. Most of the ambassadors gave specific examples of how the content of theirpresentation was manifest in the hands-on
Paper ID #19169Engineering (verb) Diversity: Using the Engineering Design Process to Defineand Intervene in the Issue of Undergraduate Diversity at the Institution LevelProf. Jenni Buckley, University of Delaware Dr. Buckley is an Assistant Professor of Mechanical Engineering at University of Delaware. She received her Bachelor’s of Engineering (2001) in Mechanical Engineering from the University of Delaware, and her MS (2004) and PhD (2006) in Mechanical Engineering from the University of California, Berkeley, where she worked on computational and experimental methods in spinal biomechanics. Since 2006, her research
Paper ID #17997Implementing Design Thinking into Summer Camp Experience for High SchoolWomen in Materials EngineeringMs. Kaitlin I. Tyler, University of Illinois, Urbana-Champaign Kaitlin is currently an Education Fellow with the Granta Education Division. She received her PhD at the University of Illinois Urbana Champaign under Professor Paul Braun. Her research was split: focusing on manipulating eutectic material microstructures for optical applications and examining how engineer- ing outreach programs influence participants’ self-perceptions of engineering and self-confidence. Her interests lie in materials education
mindfulness and its impact on gender participation in engineering education. He is a Lecturer in the School of Engineering at Stanford University and teaches the course ME310x Product Management and ME305 Statistics for Design Researchers. Mark has extensive background in consumer products management, having managed more than 50 con- sumer driven businesses over a 25-year career with The Procter & Gamble Company. In 2005, he joined Intuit, Inc. as Senior Vice President and Chief Marketing Officer and initiated a number of consumer package goods marketing best practices, introduced the use of competitive response modeling and ”on- the-fly” A|B testing program to qualify software improvements. Mark is the Co-Founder
Education Lab advised by Prof. Sheri Sheppard. Her work focuses on fostering mindful awareness, empathy and curiosity in engineering students. Beth completed a BS in Aerospace Engineering from the University of Virginia in 2010 and a MS in Mechanical Engineering from Stanford in 2012.Dr. Tua A. Bj¨orklund Dr. Bj¨orklund focuses on supporting idea development efforts in product design, entrepreneurship and teaching in higher education. She has been a part of creating the Aalto University Design Factory, an experimentation platform for students, teachers, researchers and practitioners in Finland. Currently Dr. Bj¨orklund is a visiting Fulbright scholar at Stanford University, working at the Center for Design Research
Paper ID #19194Graduate Automotive Engineering Education Innovation – Deep Orange Pro-gram Collaborative Industry Partnerships Enable System Engineering BasedApproach for Project-Focused LearningDavid Schmueser Ph.D., Clemson University David Schmueser joined CU-ICAR in August 2013 as Adjunct Professor of Automotive Engineering. He also is a consultant to the US University Program at Altair Engineering, where he served as University Program Manager, 2007-2015. He received his BS and MS degrees in Engineering Mechanics, and a PhD degree in Mechanical Engineering, all from the University of Michigan-Ann Arbor. Prior to
Paper ID #18272Work in Progress: Engineering Invisible Mountains! Mental Health andUndergraduate-Level Engineering Education: The Changing Futures ProjectDr. Jane Andrews, Aston University Dr Jane Andrews is currently a Senior Lecturer in Engineering Education at the School of Engineering & Applied Science, Aston University, UK. The only Sociologist in the UK to hold a lectureship in Engi- neering, Jane’s research interests include all aspects of engineering education with a particular focus on elementary level engineering education and gender issues within engineering.Prof. Robin Clark, Aston University
Medicine (IM) voice the needfor professional development programs to develop teachers’ knowledge and skills for integratingengineering into instruction 5. Therefore, providing professional development for in-serviceteachers has the potential to improve teachers’ engineering knowledge and increase studentinterest in engineering. Previous studies underscored the importance of teacher guidance for students inimproving students’ views of engineering and choosing STEM fields for their future career path6,7 . Bearing in mind that teachers lack knowledge about engineering and how to integrate it intotheir lessons 8,9, researchers have created professional development (PD) programs to improveteachers’ knowledge. For example, in one study, a two
Paper ID #19473Influencing Student Motivation Through Scaffolded Assignments in a Qual-ity Analysis Course and Its Impact on LearningDr. Nadiye O. Erdil, University of New Haven Nadiye O. Erdil, an assistant professor of industrial and systems engineering and engineering and oper- ations management at the University of New Haven. She has over eleven years of experience in higher education and has held several academic positions including administrative appointments. She has ex- perience in teaching at the undergraduate and the graduate level. In addition to her academic work, Dr. Erdil worked as an engineer in sheet metal
FrameworkLearning environments are complex and have many different dimensions. Evidence-basedlearning environments and curricula, designed with authentic learning experiences andworkforce outcomes in mind, utilize contemporary educational theories of learning. Assessmentof specific outcomes across multiple diverse learning environments can be meaningfully done byintegrating theoretical frameworks aligned with the specific aims. Two leading theories framethe development of assessment and evaluation tools utilized in this study: Kolb’s ExperientialLearning Theory and Lent, Brown, and Hackett’s Social Cognitive Career Theory.Assessing Application of Engineering Design ApproachesThe AWIM curriculum emphasizes the importance of active learning experiences
Paper ID #19239Assessment of a Novel Learning Block Model for Engineering Design SkillDevelopment: A Case Example for Engineering Design InterviewingMaria R. Young, University of Michigan Maria Young is an assistant director of the Center for Socially Engaged Design at the University of Michi- gan (UM). She is also program manager of the UM Global Health Design Initiative. Maria holds a B.S.E. in biomedical engineering from the University of Michigan (2014) and an M.S. in human nutrition from Columbia University (2015). Maria has experience applying qualitative research methods to understand a community’s cultural context
Paper ID #19970Rethinking Engineering Pathways: An Exploration of the Diverse K-12 SchoolExperiences of Six Black Engineering UndergraduatesDr. Bruk T. Berhane, University of Maryland, College Park Dr. Bruk T. Berhane received his bachelor’s degree in electrical engineering from the University of Mary- land in 2003, after which he was hired by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) where he worked on nanotechnology. In 2005 he left JHU/APL for a fellowship with the National Academies where he conducted research on methods of increasing the number of women in engineering. After a brief stint
.2168-9830.2001.tb00579.xTurner, M. (2015). A flipped course in modern energy systems: Preparation, delivery, and post-mortem. Paper presented at 2015 ASEE Annual Conference & Exposition, Seattle, WA. Washington, DC: American Society of Engineering Education,. doi: 10.18260/p.23382Appendix Figure 5. Mind Map Clipping Figure 6. CDR Submission – CAD Figure 7. CDR Submission – PrototypeFigure 8. CDR Submission – Rendering/Branding Figure 9. CDR Submission – Rendering/Branding
Paper ID #20567Setting the Foundations for International and Cross-disciplinary Innovation:The U.S.-Denmark Summer School ”Renewable Energy: In Practice”Dr. Tela Favaloro, University of California, Santa Cruz Tela Favaloro received a B.S. degree in Physics and a Ph.D. in Electrical Engineering from the Univer- sity of California, Santa Cruz. She is currently working to further the development and dissemination of alternative energy technology; as project manager of a green building design initiative and researcher with the Center for Sustainable Engineering and Power Systems. Her background is in the development of
and we must listen to other suggestions and understand them. Only then can we ultimately choose which the best idea is.Being open-minded was therefore a very important attitude to have during the design process formany of the students and was closely associated with generating creative ideas, acceptingfeedback, and listening intently.3. Working Effectively as a Team The ability to work effectively as a team was another core theme that emerged from thefreshmen engineering students’ reflections. Many reflections described the importance ofactively participating, being a team player, cooperating, distributing work, managing timeappropriately, supporting group members, and trusting group members. In a typical groupproject
Paper ID #17668The Paperless First Year ProfessorDr. Rustin Deane Webster, Purdue University, New Albany Dr. Rustin Webster is an assistant professor at Purdue University. He teaches within the Purdue Poly- technic Institute and the department of engineering technology. He specializes in mechanical engineering and computer graphics technology. Prior to joining Purdue, Dr. Webster worked in the Department of Defense field as an engineer, project manager, and researcher. His specialization was in mechanical de- sign, research and development, and business development. He studied at Murray State University and the
Paper ID #18637New Faculty Learning Community as Retention Tool for UnderrepresentedMinoritiesDr. Anne-Marie A Lerner, University of Wisconsin, Platteville Anne-Marie Lerner is an associate professor in mechanical engineering at the University of Wisconsin - Platteville. Her professional interests include inclusive in-class and out-of-class supports, investigat- ing effective teaching pedagogy for remote delivery as well as to nontraditional students, and education assessment. She received her PhD in mechanical engineering from Georgia Institute of Technology in 2008.Dr. Christopher Frayer, University of Wisconsin
Paper ID #19408Helping Students to Provide Effective Peer FeedbackDr. Edward F. Gehringer, North Carolina State University Dr. Gehringer is an associate professor in the Departments of Computer Science, and Electrical & Computer Engineering. His research interests include computerized assessment systems, and the use of natural-language processing to improve the quality of reviewing. He teaches courses in the area of programming, computer architecture, object-oriented design, and ethics in computing. c American Society for Engineering Education, 2017 Helping Students to Provide Effective
Machining handbooks Systems automation. Manufacturers catalogs Specification sheetsTable 3 Competencies Required by the Various Courses in the Engineering Technology ProgramThe basic goals of adopting a constructivist approach are very simple. The goals are retention,understating, active use of knowledge and skills, hence the integration with other classes isessential to this strategy. Engineering Technology curriculum should be designed to direct towardsa more attentive approach in valuing knowledge integration [17], bearing in mind that from
Engineering Network (KEEN) and provided by the University of New Haven(UNH), a KEEN partner institution. KEEN promotes engineering education by fostering anentrepreneurial mindset in students: “… beginning with curiosity about our changing world,integrating information from various resources to gain insight, and identifying unexpectedopportunities to create value. An engineer equipped with an entrepreneurial mindset is able tocreate extraordinary value within any type of organization. KEEN schools identify, nurture, anddevelop entrepreneurially minded engineers who will contribute to our national economicprosperity and secure individual fulfillment through a lifetime of meaningful work.”(engineeringunleashed.com)The UNH KEEN modules are intended to
applications, including surface enhanced Raman scattering and anti-fouling surfaces. He also develops nanotechnol- ogy based lessons that integrate the STEM disciplines and develops human centered design projects that engage students in engineering. c American Society for Engineering Education, 2017 The Effects of Design Thinking Methods on Pre-Service PK-12 Engineering and STEM Teacher Capabilities, Confidence and Motivation in Creativity (Work in Progress)Rationale and BackgroundCreativity is an essential habit of mind for engineers and inherent in the engineering designprocess.1 Creative thinking in design is a focus of engineering education and K-12 engineeringand technology
Paper ID #18034University Innovation & Entrepreneurship Ecosystem for Engineering Edu-cation: A Multi-case Study of Entrepreneurship Education in ChinaProf. Wei Zhang, Zhejiang University 2015-Present Professor, Institute of China’s Science,Technology and Education Strategy, Zhejiang Uni- versity Associate director of Research Center on Science and Education Development Strategy, Zhejiang University 2012-2014 Professor, School of management, Hangzhou Dianzi University Dean of Organiza- tion Management, School of management, Hangzhou Dianzi University 2008-2012 Director of Teaching & Research Division, School of
curricular model to develop anentrepreneurial mindset in engineering students. We characterize the entrepreneurial mindsetbased on the Kern Entrepreneurial Engineering Network (KEEN)’s 3C’s, which are curiosity,connections and creating value. The learning outcomes and complementary skills in the KEENframework that we attempt to achieve through the e-learning modules are shown in Table 1. Thecontextual activities, explained in the following section, provide the reinforcing method to helpstudents gain the complementary skills. Table 1 Entrepreneurially Minded Learning (EML) Outcomes and Skills EML Outcomes Dimension Learning Outcome Demonstrate constant curiosity about
orthographicprojection in Engineering Design Graphics. Future more, hands-on activities by usingphysical models can improve low visualizers’ spatial visualization skills efficiently. Withas little as ten physical models in two weeks period, low visualizers increased their examscore significantly. There are many challenges in teaching at two-year colleges. Somestudents enroll in courses without a clear track in mind. Because of students' diversebackground, it is tough to reach all low visualizers outside the classroom who lackmotivation. Therefore, future research includes design in-class hands-on activities thatcan fit a two-year college learning environment and reaches more students. The authorplans to design and build physical models by using 3-D printing
Paper ID #19726Recapping Class Content with Student Video ResponsesProf. Kaela Mae Martin, Embry-Riddle Aeronautical University, Prescott Kaela Martin is an Assistant Professor of Aerospace Engineering at Embry-Riddle Aeronautical Univer- sity, Prescott Campus. She graduated from Purdue University with a PhD in Aeronautical and Astronau- tical Engineering and is interested in increasing classroom engagement and student learning.Dr. Dina M Battaglia, Embry-Riddle Aeronautical University, Arizona Dr. Battaglia is the Director for the Center for Teaching & Learning Excellence for the Embry-Riddle Aeronautical University
Society for Engineering Education, 2017 A Study on Enhancing Advanced Physics Laboratory TeachingIntroductory physics laboratory (IPL) courses are designed to educate students on general physicstopics, but they lack the experimental sophistication and experience required for their future. Onthe other hand, diverse and high-quality advanced physics lab courses must be made available toprepare students for future careers and advanced degrees. In a recent AIP report, Equipping PhysicsMajors for the STEM Workforce, the report's first aim was "Varied and high-quality lab courses."With this in mind, an Advanced Physics Laboratory (APL) course for upper division studentsshould provide the following. • Physical aspects – access to a wide