Asee peer logo

A Module For Teaching Fundamentals Of Finite Element Theory And Practice Using Elementary Mechanics Of Materials

Download Paper |


2003 Annual Conference


Nashville, Tennessee

Publication Date

June 22, 2003

Start Date

June 22, 2003

End Date

June 25, 2003



Conference Session

Innovations in Teaching Mechanics

Page Count


Page Numbers

8.74.1 - 8.74.24



Permanent URL

Download Count


Request a correction

Paper Authors

author page

William O. Jolley

author page

Hartley T. Grandin Worcester Polytechnic Institute

author page

Joseph Rencis University of Arkansas

Download Paper |

NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Session 3268

A Module for Teaching Fundamentals of Finite Element Theory and Practice Using Elementary Mechanics of Materials

William O. Jolley, Joseph J. Rencis, Hartley T. Grandin, Jr. Mechanical Engineering Department Worcester Polytechnic Institute, Worcester, MA 01609, USA

Abstract This paper presents a study module that is incorporated into a formal introductory undergraduate level course on finite element theory and practice. The module consists of an Integrative Project and Homework Exercises based upon sophomore level education in mechanics of materials. The objective of the module is to support the teaching of the finite element method and to emphasize assumptions and limitations in the application of the technique.

The Project centers on a simply supported beam with geometric discontinuities. This beam is investigated using a commercial finite element code in five different phases. Each phase uses a different solution model consisting of a hand calculation, beam, two- dimensional area, and three-dimensional solid elements. The solution from each phase is compared to the solution from traditional mechanics of materials beam theory in terms of the following: weight and center of gravity, deflection, and stress. Static failure theories, stress concentrations and a redesign are also considered. The approach of a comparative solution to a problem using different element types has not been considered in any finite element textbook to date and very few books consider stress concentrations and failure theories.

The Homework Exercises involve solving similar, yet smaller problems using commercial software and verifying the finite element solutions with the mechanics of materials solutions. The five homework exercises considered here include: a truss, an L- bracket with re-entrant corner, a plate with a notch, a thick-walled pressure vessel, and a pin joint connection.

The project and some of the homework exercises reinforce the following: an understanding of finite element theory, an understanding of mechanics of materials theory, a knowledge about the physical behavior and usage of each element type, the ability to select a suitable element for a given problem, and the ability to interpret and evaluate finite element solution quality. Emphasis is strongly placed on the importance of verification. The project and several of the homework exercises also illustrate common major conceptual mistakes made by students and, often, by practitioners using commercial software.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright © 2003, American Society for Engineering Education

Jolley, W. O., & Grandin, H. T., & Rencis, J. (2003, June), A Module For Teaching Fundamentals Of Finite Element Theory And Practice Using Elementary Mechanics Of Materials Paper presented at 2003 Annual Conference, Nashville, Tennessee. 10.18260/1-2--11940

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2003 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015