New Orleans, Louisiana
June 26, 2016
June 26, 2016
June 29, 2016
978-0-692-68565-5
2153-5965
Division Experimentation & Lab-Oriented Studies: Electrical and Control Engineering
Division Experimentation & Lab-Oriented Studies
28
10.18260/p.26421
https://peer.asee.org/26421
6155
Oscar Ortiz, M.S., is an Assistant Professor in the School of Engineering and Engineering Technology at LeTourneau University, where he has taught since 2002. He received his B.S.E.E. from the state university of West Virginia at Morgantown and his M.S. degree from Northeastern University at Boston, Mass. Prior to joining the faculty at LeTourneau, he was involve in several voice and data communication companies. His professional interests include digital signal processing, analog, and digital communications. Email: oscarortiz@letu.edu.
Paul R. Leiffer, Ph.D., P.E., is a professor in the School of Engineering and Engineering Technology and Chairman of the Engineering Department at LeTourneau University, where he has taught since 1979. He is the co-developer of LeTourneau’s program in Biomedical Engineering. He received his B.S.E.E. from the State University of New York at Buffalo, and his M.S. and Ph.D. degrees from Drexel University. His professional interests include biomedical signal processing, engineering design, and engineering ethics.
As educators we want to make sure that our students are learning and understanding the material we teach them and that they will know how to apply it to solve real engineering problems. A vast amount of research has been dedicated to the study of new teaching methods and laboratory curricula to ensure that our students are understanding, learning, and applying this knowledge to solve problems. Our university emphasizes a hands-on approach to engineering education. From the beginning of the freshman year to the senior year, students participate in different levels of engineering projects. Each project provides the students with the opportunity to apply the knowledge they learned in classes, and each problem they face in the project inspires them to explore the area more deeply in the future. Project-based learning is an instructional method that demands from the student acquisition of critical knowledge, problem solving proficiency, self-directed learning strategies, and team participation skills. For our Analog Electronics and Lab course we looked for a project that would assist us to evaluate our if junior engineering students could apply the knowledge acquired in their freshman and sophomore engineering courses, if they could integrate this knowledge with what they were learning in the current electronics course, and if they would be challenged to seek to learn the concepts of future engineering courses.
For this purpose a Radio Controlled Race Car Project was selected as a semester-long project. The electronic project was divided into four distinguishable subsystems, 1) analog radio control, 2) radio transmitter/receiver, 3) control unit, based on an Arduino microcontroller, and 4) power subsystem. Except for the Arduino microcontroller, the use of microchips was restricted and only such analog components as diodes, Zener diodes, bipolar junction transistors and MosFETs were allowed. The power subsystem required a 9–18 volts DC to AC conversion and rectification.
At the beginning of the semester, the students were presented with the project challenge. They were divided into groups of 4 to 5 and began by clarifying the problem they wanted to solve, assessing how much they already knew about the problem and how much they needed to research. The next time they met, with the results of their research, they brainstormed for possible solutions, they divided the work in accordance with the project subsystems and prepared to work during the semester to implement a final solution.
Surveys were conducted before and after each design session, and at the end of the final project. Student understanding and mastery of the course content was measured using quizzes, tests, the project presentations, and written final reports. On the final report students were requested to identify where and explain how the following concepts were applied in their project: resonance, impedance, impedance matching, maximum power transfer, voltage regulation, DC/AC voltage conversion, filtering, Barkhausen’s criterion, oscillators, frequency modulation, energy conversion and transformation, power losses and efficiency. The positive results of student understanding, learning and application of acquired knowledge to solve engineering problems may prompt the implementation of other projects that may include multidisciplinary collaboration and integration of projects between classes.
Ortiz, O., & Leiffer, P. R. (2016, June), A Radio Controlled Race Car Project to Evaluate Student Learning in Electronics Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26421
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015