Columbus, Ohio
June 24, 2017
June 24, 2017
June 28, 2017
Learning Environments for Statics, Dynamics, and Mechanics of Materials
Mechanics
18
10.18260/1-2--27532
https://peer.asee.org/27532
717
Lieutenant Colonel Jakob Bruhl is an Assistant Professor in the Department of Civil and Mechanical Engineering at the United States Military Academy, West Point, NY. He received his B.S. from Rose-Hulman Institute of Technology, M.S. Degrees from the University of Missouri at Rolla and the University of Illinois at Urbana/Champaign, and Ph.D. from Purdue University. He is a registered Professional Engineer in Missouri. His research interests include resilient infrastructure, protective structures, and engineering education.
Led Klosky is a Professor of Civil Engineering at the United States Military Academy at West Point and a past winner of ASEE's National Teaching Medal. He is a licensed professional engineer and works primarily in the areas of infrastructure, subsurface engineering and engineering education.
Colonel Joseph Hanus is the Civil Engineering Program Director at the U.S. Military Academy, West Point, NY. He received his B.S. from the University of Wisconsin, Platteville; M.S. from the University of Minnesota, Twin Cities; and Ph.D. from the University of Wisconsin, Madison. He is an active member of ASEE and is a registered Professional Engineer in Wisconsin. His research interests include fiber reinforced polymer materials, accelerated bridge construction, and engineering education.
It is well known that engineering judgment is critical to effective engineering practice, particularly when design thinking is required. As computer-aided design tools have made detailing far more automated, engineers are being asked to take on higher-level tasks earlier in their careers, necessitating the development of this judgment in undergraduates. This clearly has become a priority for many programs, as evidenced by the growth of project-based learning. Developing this type of judgment and creativity is challenging, but inquiry-based learning will play an important role and well-tested tools for inspiring new types of knowledge acquisition methods in our students are needed.
This paper describes hands-on, inquiry-based learning activities that were recently designed and implemented in the first mechanics course taken by students in the Department of Civil and Mechanical Engineering at the US Military Academy in part to help accelerate the development of students’ engineering judgment. These activities enabled and encouraged knowledge acquisition through personal effort which inspires deeper inquiry. This introductory course combines statics and mechanics of materials: the activities described in this paper address both foundational topics. Inspired by inquiry-based learning techniques, these activities are student-focused rather than instructor-led activities and are somewhat open-ended.
The first activity required students to assemble an engine hoist and use four basic scales and basic concepts in statics to determine the weight of an engine block. Students then predicted what would happen to the distribution of the weight as the location of the engine block moved along the engine hoist arm, reinforcing the concepts of reactions and moments of a force. Another activity used an aluminum load cell with longitudinal strain gages to weigh the engine block. This activity reinforced the concepts of stress, strain, and Hooke’s law while exposing students to the world of instrumentation and data acquisition for the first time. In another activity, students were asked to predict strains occurring within a beam in bending – before the concepts and theories of bending had been introduced. Challenging their previous knowledge about axial strain, the linear strain distribution through the depth of a beam was discovered by the students measuring strains at various points through the beam’s depth. Expanding this knowledge in a following lesson, students were required to predict strains on beams of equal cross-sectional area but different shapes (rectangle, square tube, and I-shape). These beams were loaded and strains were measured allowing students to observe the influence of moment of inertia on strain and, therefore, stress. Each of these activities was rich in what might be called “second order” learning, exploring topics (things like Wheatstone Bridges and analog-to-digital data conversion) well beyond the basic concepts and theory being taught.
In addition to describing the activities in detail, this paper provides preliminary assessment data about the effect of the hands-on learning activities on specific learning objectives and more broadly within the context of developing judgment. Qualitative commentary on the use of these activities is also presented.
Bruhl, J. C., & Klosky, J. L., & Mainwaring, T., & Hanus, J. P. (2017, June), Accelerating the Development of Engineering Judgment in Students through Inquiry-Based Learning Activities Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. 10.18260/1-2--27532
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2017 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015