New Orleans, Louisiana
June 26, 2016
June 26, 2016
June 29, 2016
978-0-692-68565-5
2153-5965
K-12 & Pre-College Engineering Division Poster Session: Works in Progress
Pre-College Engineering Education Division
Diversity
6
10.18260/p.26521
https://peer.asee.org/26521
559
Dr. Michele Miller is a Professor of Mechanical Engineering at Michigan Technological University. She teaches classes on manufacturing and does research in engineering education with particular interest in hands-on ability, lifelong learning, and project-based learning.
Dr. Nina Mahmoudian is an assistant professor in the Mechanical Engineering-Engineering Mechanics Department at Michigan Technological University. She is the founding director of the Nonlinear and Autonomous Systems Laboratory (NASLab). She is a recipient of 2015 National Science Foundation CAREER award and 2015 Office of Naval Research YIP award.
Mo Rastgaar received the Ph.D. degree in mechanical engineering from Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, in 2008.
He is currently an Associate Professor in mechanical engineering and the Director of the Human-Interactive Robotics Lab. His present research focuses on assistive robots by characterizing the agility in the human gait. Dr. Rastgaar is a recipient of 2014 NSF CAREER Award.
Saeedeh Ziaeefard is a PhD student and research assistant with Nonlinear and Autonomous Systems Laboratory (NASLab) in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. Her research interests include engineering education, control and navigation of autonomous underwater vehicles.
I am an undergraduate student at Michigan Technological University studying Psychology. I work as a research assistant for a number of departments at my university.
Robots are becoming ubiquitous in our lives. They have moved beyond factories to many other environments including health care and our homes. The success of FIRST robotics shows their power to draw more young people to STEM education and careers. We believe that robots can do more to reach a wider audience including female and minority students. Robotics present a rich multi-disciplinary learning experience that touches upon several STEM disciplines including electronics, controls, fabrication, and computer programming. To broaden the representation in STEM disciplines, it is necessary to show students how they can make a difference and solve important problems. Mission-based robots show off the capabilities of robots but may not spur the imagination into coming up with ways to use robots to solve problems.
Our team is developing two educational robotic platforms that cost less than $1000: an underwater glider called GUPPIE and a surface electromyography (sEMG)–controlled manipulator called Neu-pulator. GUPPIE is an underwater robot that has application in monitoring and inspection of the environment, thus introducing the concept of robots as co-explorers in everyday life. Neu-pulator is a human-interactive robot that uses electrical activity of human muscles to move a manipulator. It introduces students to assistive robots, which are a class of co-robots that amplify or compensate for human capabilities. We hypothesize that meaningful contexts and hands-on learning with these types of robotic platforms will broaden impact to diverse audiences and increase interest in critical STEM areas.
Our university hosts summer educational camps for middle and high school aged students. In summer 2015, GUPPIE and Neu-pulator were part of a week-long Women in Engineering camp for 26 high school girls. Two weeks later GUPPIE and Neu-pulator were the sole focus for a week-long robotics camp for 20 middle school boys and girls. We are interested in the following questions:
• Which activities produce high levels of student engagement? • Do the robotics activities affect student interest in STEM subjects? • Does the addition of meaningful context to robotic hands-on activities increase the creativity of problem solutions?
We are also interested in the effects of gender and prior robotics experience on these questions. During the week, we collected a variety of data: pre and post-surveys; group interviews at the end of the week; observations; work products. This paper will summarize the data and discuss the research questions.
With this first offering of the robotics camps, the sample size is small. Nevertheless, the results provide direction for more in-depth study during subsequent camp offerings. Camps will be offered at a larger scale next summer. Furthermore, camps will be offered to teachers so that the activities can be taken into schools and thus reach more students.
Miller, M., & Mahmoudian, N., & Rastgaar, M., & Ziaeefard, S., & Patterson, A. J., & Bailey, J. (2016, June), Adding Meaningful Context to Robotics Programs (Work in Progress) Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26521
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015