set ofsix-piece chicken nuggets they can produce within 15-minutes. The points serve as a metric forthe overall productivity of the country and world during the game. The game is played twicewithin a 65-minute class session. The first game does not have any tariffs imposed and thusrepresents a liberalized trade environment. The game is then run a second time under a scenarioin which one country has invaded another country and in response multiple countries haveimposed import tariffs on each other. Students also spend five-minutes reflecting on what theylearned about international trade. While the specific results change each time new student teamsplay the game, the general results that a) there are winners and losers from tariffs and b
]). The SerenePulse webapp harnesses awebcam or selfie camera to capture heartbeats by analyzing fluctuations in light intensity reflected from the skin,a fundamental principle of rPPG technology.HRV metrics In this research, we build upon previous research [16] that detailed on HRV metrics and stress analysis. Heartrate variability (HRV), calculated from the input of rPPG, inter-beat intervals is a crucial physiological markerthat offers insights into the autonomic nervous system’s (ANS) functioning [16]. It reflects the dynamic interplaybetween the sympathetic and parasympathetic branches of the ANS, highlighting the body’s adaptability to stressand relaxation states [39]. Among HRV metrics, SDNN is indicative of autonomic flexibility and
concept maps for “equitable infrastructure” at the end of the semester. The concept mapsrevealed differences in student ideas that reflect the different approaches taken in the courses.Analysis of these concept maps yields insight into student learning on equitable infrastructureand can provide guidance for others wishing to incorporate equity into first-year and/or civilengineering coursework.IntroductionCivil engineering education has long recognized the need for the curriculum to blend a broadarray of technical and professional skills to meet the needs of the profession (see, for example,the Civil Engineering Body of Knowledge [1]). The ways in which infrastructure has bothpositively and negatively affected equity in our social systems have
. students in engineering – from motivations and persistenceto encounters with racial microaggressions – the disparity remains, underscoring the need fordeeper exploration.Utilizing autoethnography, this study illuminates the journey of a Black female engineer fromNigeria during her inaugural semester in a U.S.-based civil engineering Ph.D. program. Theresearch hinges on two pivotal questions: what early challenges did she confront, and how did shetraverse them? To answer these questions, reflective journals and audio diaries maintainedconsistently by the researcher were employed. These data sources were subjected to inductivecoding via Dedoose to tease out dominant themes.This research findings highlight critical challenges this international
% campus during the project (*Note: Due to scheduling conflicts, • The curriculum was delivered to 11th graders were assessed one year following module sessions) students in 60-minute weekly module sessions • Students reflected positively about o Continuous active learning and their experiences and highlighted how collaboration among and with much they learned about AQ students with virtual guidanceLearning Objectives and Modules Focused on AQModule Session 4LO 4. Developing Competencies with Air Quality Monitors1. Reviewed Module 3 Activity
U.S. higher education contexts, there are few studies that specificallycenter them to contextualize their experiences. International graduate students experience uniquechallenges, such as acculturation, isolation, and visa status, that impact attrition and student well-being. Previous studies are mainly focused on acculturation or language problems for studentsacross disciplines. For engineering disciplines, the expectation of English language proficiency isdifferent than that of other majors like humanities, and engineering students may rely onmathematical and experimental data more heavily than English proficiency to perform well in theirresearch. Therefore, understanding how international graduate students reflect on their
final metric, the N2 score, concerns the prevalence of post-conventionalrelative to the absence of preconventional reasoning, not only that participants make decisionsbased on universal principles of justice, but also that they do not make decisions based on aconcern for themselves alone.The MFQ is a measure of moral intuitions that asks participants to decide on not onlyconsiderations relevant to resolving ethical questions, but also the extent to which they agreewith statements with moral content [23]. These considerations belong to one of five “moralfoundations,” understandings of right and wrong driven by intuitions, closer in nature toemotions than reflective thought [25]. These include care-harm, fairness-cheating, loyalty-betrayal
ofbreakthrough innovation. This paper delves into the course’s framework, which draws inspirationfrom the vast reservoir of innovation literature and two decades of the instructor’s industryexperience applying and improving innovation business processes with her teams in a fast-paced,high-tech industry. The core hypothesis of this paper is that innovation is fundamentally a learningprocess, that personal innovativeness can be cultivated and elevated through the teaching ofestablished principles derived from the realm of learning science. These principles encompass theelevation of metacognition, the deliberate integration of intentionality into the learning process,and the embedding of reflective practices into the students' educational journeys
) Reflection section on linking existing information – Students had to reflect on what sortof existing KSAs they had used to solve the task given in (1). They then orally presented thisreflection.The students are evaluated before and after the M&S module to ascertain the effectiveness ofthe intervention in an online survey and hence, determine their needs for transferringlearning.(a) A 14 item Transfer of Learning Questionnaire (TLQ) adapted from [18], provided pre-and post-intervention, measures student perception of the importance, ease, and potentialobstacles to transfer. This questionnaire is composed of three constructs – attitudes totransfer, barriers to transfer, and learning retention. All 14 items are rated on a standardLikert scale from
Professional Framework (IPF) [1]. During the 2023 summer, the team also participatedin the Aspire Summer Institute (ASI), sponsored by the NSF Eddie Bernice Johnson INCLUDESAspire Alliance to start developing the content for sessions in inclusive communication. The ASIwas a week-long virtual workshop that gave the team an opportunity to retreat, reflect and act tobetter support the Project ELEVATE professional development pillar. Through the ASPIREsummer institute, the team developed the following long-term goal: “Implement inclusive professional development that equips all engineering faculty and institutional leaders with skills to implement inclusive practices and to support career advancement of faculty from AGEP populations
course in Fall 2023. In addition to the survey questions,students were invited to answer open-ended questions about the positive aspects of the courseand to write a reflection after the meet and greet event. The survey questions are presented inTable 1. The sense of belonging questions were adapted from the Sense of Belonging to MathScale by Good et al. [16], and the motivation question was taken from the MUSIC model byJones [6]. Table 1. Survey items related to students’ interests, motivation and sense of belongingMeasurement Survey Questions Answers Time of CollectionInterests How much are you currently Likert scale • FALL 22 END interested in
perspectives. This work-in-progress paper describes the mixed-methods researchdesign considerations in formulating the study with emphasis on the quantitative portion.Detailed development of the qualitative portions of the study are still in progress and will bereported at future date.Positionality Statement The authors openly acknowledge and reflect on their subjective stance and potentialbiases by providing a positionality statement that encompasses our backgrounds and experiencesas they may relate to this work. We begin with this statement to assist readers in understandingpossible influences this bias may have in our process. Bruce Carroll is a white male engineeringeducator with a tendency toward an emic account from the institutional
analysisof the autoethnographic account of the first blind student to complete the introductory ECEcourse at our institution, Stanford University. This work also expands the role of the blindstudent to become a co-researcher, actively guiding the direction of this work while receivingmentorship from research team members on qualitative research methods.In this work, we begin with the analysis of seven reflection journal entries written by the blindstudent and relevant discussion session notes recorded by the lead researcher. These data weregenerated and collected via the autoethnography method and analyzed by applying the CAREmethodology, using a grounded theory approach, during which we completed open and focusedcoding. We then identify
provocative lens toprovoke thoughts from the students by having them reflect and juxtapose their current learningexperience in engineering classrooms with hypothetical environments envisioned by hook. Theoutcome of such reflection and juxtaposition can provide foundational knowledge to assist in theefforts to identify “features” in engineering classrooms and pedagogies that perpetuate cisgenderand heteronormative elements in engineering education. It must be noted that this is a pilotresearch study that strives to produce knowledge to help contribute to future efforts to reimagineengineering classrooms and pedagogies. Thus, no direct engagement with faculty andadministrators is expected in this pilot study.Literature review In engineering
For the assignment this week, take some time to reflect on your experiences in college so far. You may choose to read some of the resources provided (or not). Discuss elements among the following that are of interest to you – you do not need to discuss all of these elements. • What has been your mental health / wellness status this semester? Describe times you have felt happy, excited, confident, successful, stressed, anxious, disappointed, and/or tired. Discuss sources of these feelings: physical health / illness, homework, exams, family issues, financial issues, etc. • Describe a situation where you reached out for help and received support – from friends, family, on-campus resources. • Describe positive actions you are taking to
participation in postsecondary spaces. We willdefine disability and describe our choice to use both identity- and person-first language. We willdiscuss our choice to prioritize research that highlights disabled student voices.Our literature review will explore: which disabilities have been the focus of research in highereducation; problematic practices that require increased disabled student self-advocacy rather thansystemic changes; the reasons for students’ reluctance to use accommodations; the weaknesses ofthe accommodations approach; and suggestions for moving beyond accommodations. We willconclude by offering recommendations and reflections for researchers who want to researchdisabled students.The purpose of this paper is to provide a place to
, andalso a component involving the ways the actual work done influences students’ perception oftheir preparation. § RQ1: How does participation in environmental engineering and science experiences outside of the classroom contribute to the ways students construct early career trajectories? § RQ2: How does participation in environmental engineering and science experiences outside of traditional classrooms influence students’ perception of their preparation to construct and participate in professional judgment processes?BackgroundOverview of the STEMcx Environmental Justice ExperienceThis data analyzed in this research reflects the experiences of one intern in the STEMcxEnvironmental Justice Internship. STEMcx is an
student who may not otherwiseview themselves as an engineer—a curious person, an entrepreneur, a person with great ideasthat society needs, or a part of the university’s ecosystem—may be able to demonstrate theirpotential to themselves and to their community through their lived experiences viastory. Providing time for students to develop and tell their stories is a powerful way to validatethe vast experiences students bring with them to college. Likewise, faculty want to know theirstudents, and students want to know themselves. Our own work with story in this context wasinspired by the Kern Entrepreneurial Engineering Network (KEEN) on Stories project starting in2020 and reflects our interest in instilling an entrepreneurial mindset in our
urban communities within the mid-Vancouver Islandregion.1.2 OverviewThis paper is the first in a series that chronicles the development and honing of the survey instrumentand the preliminary results, analyses and observations leading from it. The primary purpose of thispaper is to summarize the iterative process that was involved in creating the surveys. Subsequentpapers will provide detailed analyses of the survey results.The presentation of the development of the survey mirrors our iterative process, which moved frominitial development of a fourth-year survey, follow-up interviews, a reflection based on the responsesand literature, followed by a first-year survey, and follow-up interviews. While the primary objectivefor both the survey and
]. Results from the case-study questions during the firsttwo years proved inconclusive and student comments reflected their confusion in trying torespond to the case studies, so this part of the survey was dropped in subsequent years. Resultsof the case study responses from 2020 and 2021 are not included in this discussion. This studypresents the results of the Likert scale questions, which were consistent across all four years ofthe study period. Values reported below are the averages for all responses, based on the 5-pointscale defined for each question.Results and DiscussionThe social justice focused instruction showed an effect on the first-year environmentalengineering students’ understanding of social justice, their perspectives on equity
collected from undergraduate engineering students assigned to groups in thecomparison and treatment conditions from Fall 2019 to Fall 2022. Data was collectedelectronically through the CATME teammate evaluations and project reflections(treatment, n = 137; comparison, n = 112). CATME uses a series of questions assessed on a5-point Likert scale. Quantitative analysis using Analysis of Variance (ANOVA) and Covariance(ANCOVA) showed that engineering students in the treatment group expected more quality,were more satisfied, and had more task commitment than engineering students working withintheir discipline. However, no statistically significant differences were observed for teamworkeffectiveness categories such as contribution to the team’s work
participant identity, allresponses were collected anonymously to encourage free sharing without repercussions [17].Moreover, respondents indicated who could read their story by answering the question, “Whowould you share this story with?” and they had the option of answering: 1) Everyone 2)Researchers Only, or 3) No one [17]. Participants who chose options 1 and 2 were used to completedata analysis and reported responses to this question were filtered by option 1.SenseMakerData collection was accomplished through the platform SenseMaker. Sensemaking is a researchapproach used to understand complex and ambiguous data such as narratives [18]. This tool usesmixed methods analysis to allow participants to use quantitative responses to reflect on their
(InternationalProfessional Engineering Educator Registered) title was achieved through the project“Pedagogical training of engineering educators—EnTER" (created in 2018). This wasachieved with the support of the only professional regulatory body that overseesengineering teaching professionals, the International Standard Classification ofOccupations (ISCO), with code 2311 (ISCO Code 08) as “Higher education teachingprofessional: Engineering educator" [4–6]. Thus, this article will show how the reviewedprograms are structured, and will provide a proposal for engineering that seeks to reflect,innovate, and rethink its teaching practices. Some research shows that engineering teachingpractices closely linked to the concept of traditional science are recognized, but in
approaches to • Student reflections community-engaged research • New programs and curricula • Disseminate community-engaged STEM • Research products graduate traineeship model. • Publications and conference presentations • Trainees publish papers with authors from • Collaborative grant proposals multiple disciplines; • Student placement statistics • New transdisciplinary collaborations. • Community of diversity recruitment • Trainees articulate and analyze the advocates
, social constructions and hierarchies, historical background, andsocioeconomic status among other social constructs. As Anzaldúa explored her ownupbringing and lived reality, she deconstructed those spaces she inhabited where she faceddiscrimination and ambiguity to imagine and (re)shape a third space where new realitiescould exist [16]. Through a process of self-reflexivity, Anzaldúa explains, Nepantla becomesa (re)imagined space rather than a dichotomy of worlds [16]. Anzaldúa claims that Nepantlasoften emerge through writing – the writing that comes from deep and critical reflection thateventually leads to a process that catalyzes transformation.Nepantla is also a way to explore the world through lived experience and engage indecolonial
specific goals were twofold: a) to providea reflective perspective on participants' institutional experiences related to gender, equality, androles within the School of Engineering, and b) to shed light on the challenges and barriersencountered in institutional life. Data was collected using the LEGO® Serious Play®methodology as an innovative and dialogic facilitation method. Twenty students and professorsparticipated. A phenomenological and qualitative analysis was conducted on the workshoprecordings to discern emerging perspectives. The results of the initial pilot workshops highlightthe significance that gender equality holds for both students and faculty within the realm ofuniversity education, as it is seen as the heart of institutional life
real-world problem analysis into science-relatedsubjects using case study approaches. These approaches engage students with practicalissues, fostering sophisticated thinking, promoting reflection, integrating, applying priorknowledge, and developing self-management learning skills. In our university's ConstructionEngineering program, introducing case studies addressing real-world problems in thesisprojects in the first semester of 2017 significantly improved the graduation rate, rising from10% in 2016 to 25.9% by 2022. These enhancements across various performance metricsdemonstrate the efficacy of this methodology. This research employs a non-experimentalmixed-methods approach, utilizing surveys and interviews as primary data collection
community workshop where members shareaccess to tools in order to produce physical goods” [5]. In a recent literature review, Mersanddefined a makerspace as “an area that provides materials and tools to encourage individuals orgroups to make things, to create new knowledge, or to solve problems” [6]. In educationalcontexts, makerspaces should provide access to defining elements of the Maker movement,including digital tools, community infrastructure, and “the maker mindset,” involving a positiveview of failure and focus on collaboration [7].While these definitions do not mention gender or race, they may reflect a bias of the predominantusers of makerspaces [8], as makerspaces have, at times, struggled to adequately serve a broadcommunity [9]. Rather
for all students.Within the context of this project, the course redesign process is guided by a set of faculty-created standards for neuroinclusive teaching, known within the project as I-Standards; thesestandards have undergone multiple iterations to reflect the team’s understanding of current bestpractices. The standards were developed along with experts from the university’s Center forExcellence in Teaching and Learning and the School of Education. Anchored in a strengths-based approach to neurodiversity, the standards focus on three main areas: 1) building a cultureof inclusion, 2) instructional design and inclusive teaching practices, and 3) enhancingcommunication and supports for students [41]. The teaching and learning standards are
by instructional designers at thePennsylvania State University to help ADDIE support diversity, equity, and inclusion in theclassroom [11]. In a way, it combines ADDIE with UDL while maintaining the easy-to-followprocess of course design.In the following descriptions below, the individual developing the lesson or course is referred toas the designer. The designer may also be the instructor of that course.Breaking Down Each LetterAnalyze - The designer defines the problem and establishes learning outcomes. The designer alsoassesses the existing knowledge and skills of learners, as well as the learning environment. • Introspection - The designer reflects on their personal and professional identity and worldview, considers classroom