Paper ID #5932Influence of S-STEM Funding: Challenges and SuccessesDr. Mo Ahmadian, Eastern New Mexico University Dr. Mo Ahmadian is a professor of Electronics Engineering Technology at Eastern New Mexico Univer- sity. He also serves as ABET/TAC program evaluator for Electronics and Computer Engineering Tech- nology programs. He received his B.S., M.S., and Ph.D. in Electrical Engineering from the University of Missouri-Columbia. Before starting Ph.D. work, he worked three years as a project engineer. Page 23.745.1
, linear systems, and multi-variable control. Dr. Rodriguez has given over 70 invited presentations–thirteen plenary–at international and national forums, conferences and corporations. Since 1994, he has directed an extensive engineering mentoring-research academic success and professional development (ASAP) program that has served over 500 students. These efforts have been supported by NSF STEP, S-STEM, and CSEM grants as well as industry. Dr. Rodriguez’ research inter- ests include: control of nonlinear distributed parameter, and sampled-data systems; modeling, simulation, animation, and real-time control (MoSART) of Flexible Autonomous Machines operating in an uncertain Environment (FAME); design and control of micro
Paper ID #6287Internships and Undergraduate Research: Impact, Support, and Institution-alization of an NSF S-STEM Program through Partnerships with Industryand Funding from Federal and Local Workforce AgenciesDr. Lisa Massi, University of Central Florida Dr. Lisa Massi is the Director of Operations Analysis for Accreditation, Assessment, & Data Adminis- tration in the College of Engineering & Computer Science at the University of Central Florida. She is Co-PI of a NSF-funded S-STEM program and program evaluator for an NSF-funded REU program. Her research interests include cognitive and non-cognitive factors that
Ph.D. student in the Page 23.59.1 Department of Statistics at North Carolina State University.LaTricia Townsend c American Society for Engineering Education, 2013 A Large-scale Survey of K-12 Students about STEM: Implications for Engineering Curriculum Development and Outreach Efforts (Research to Practice)AbstractThis paper reports on the use of a new survey instrument, the S-STEM survey, as a model fordata-driven decision making both formal and informal K-12 STEM education initiatives. Currentnational policy and research findings regarding K-12 STEM
innovative STEM educationprograms designed in part to increase student attitudes toward STEM subjects and careers. Thispaper describes how a team of researchers at The Friday Institute for Educational Innovation atNorth Carolina State University developed the Upper Elementary School and Middle/HighSchool Student Attitudes toward STEM (S-STEM) Surveys to measure those attitudes. Thesurveys each consist of four, validated constructs which use Likert-scale items to measurestudent attitudes toward science, mathematics, engineering and technology, 21st century skills.The surveys also contain a comprehensive section measuring student interest in STEM careers.The surveys have been administered to over 10,000 fourth through twelfth grade students inNorth
presentations–thirteen plenary–at international and national forums, conferences and corporations. Since 1994, he has directed an extensive engineering mentoring-research academic success and professional development (ASAP) program that has served over 500 students. These efforts have been supported by NSF STEP, S-STEM, and CSEM grants as well as industry. Dr. Rodriguez’ research inter- ests include: control of nonlinear distributed parameter, and sampled-data systems; modeling, simulation, animation, and real-time control (MoSART) of Flexible Autonomous Machines operating in an uncertain Environment (FAME); design and control of micro-air vehicles (MAVs), control of bio-economic systems, renewable resources, and sustainable
undergraduate diversity (ROSE-BUD) program funded by an NSF S-STEM grant to increase the recruitment, retention and development of underrepresented popula- tions in electrical and computer engineering. She has approximately 20 peer-reviewed publications with two in the Computers in Education Journal. She also recently published a book on Mobile Robotics for Multidisciplinary Study.Dr. Deborah Walter, Rose-Hulman Institute of Technology Dr. Deborah Walter is an Associate Professor of Electrical and Computer Engineering at Rose-Hulman Institute of Technology. She teaches courses in circuits, electromagnetics, and medical imaging. Before joining academia in 2006, she was at the Computed Tomography Laboratory at GE’s Global
U.S. Merchant Marine Academy. Her pri- mary teaching responsibilities are in the solid mechanics and materials areas. She was awarded the 2012 ASEE NCS Outstanding Teacher Award. Vernaza consults for GE Transportation and does research in the area of alternative fuels (biodiesel), engineering education (project based learning and service learning), and high strain deformation of materials. She is one of the PIs of two NSF S-STEM grants and one NSF ADVANCE-PAID grant.Dr. Barry J Brinkman, Gannon UniversityDr. Scott E Steinbrink, Gannon University Dr. Scott Steinbrink is an associate professor of Mechanical Engineering
speaker on career opportunities and diversity in engineering. Page 23.21.1 c American Society for Engineering Education, 2013 A Better Mousetrap: Why Did They Come?AbstractAn Academic Success and Professional Development Class, FSE 394, has been offered for over10 years for engineering and computer science students at Arizona State University (ASU).Seminars were first held for 22 students with scholarships from one NSF S-STEM program, withan emphasis on females and underrepresented minority students and both transfer and non-transfer students. The seminars have now grown to a
research topics, and course work optionsenabling completion of B.S. and M.S. degrees in 5.5 total years. This program advances thediscovery and dissemination of research that bridges undergraduate experiences with theattainment of graduate engineering degrees. Furthermore, it strengthens industry partnershipsand develops highly trained workforces, by systematically creating a pipeline of diverseengineering professionals. This program developed can be readily adapted and implemented atother programs across the nation.IntroductionThe Student Integrated Intern Research Experience (SIIRE) program at the University ofArkansas is funded via the NSF S-STEM program. The NSF S-STEM program provides studentscholarship funds to encourage and enable
, personaldevelopment, professional development, and orientation. Similarly, Madison devised anIntroduction to Engineering Design course with outcomes for students such as: carry out a basicdesign process, learn and use skills in a team environment, and develop confidence, amongothers. While some students find these courses very motivating, others still leave for differentreasons [10].Another approach to STEM retention and success was put into action by Grand Valley StateUniversity. The results of this NSF funded S-STEM project have been remarkable, with nearly100% of “at risk” students finishing their degrees in a timely manner. To qualify for thisprogram, applicants are required to have completed the first two years of a STEM discipline witha GPA of 3.0 and
personnel dedicated full-time to the MESA Center at our college havebeen supported by grants from the National Science Foundation or Department of Education, andthis support has been essential to implement the full spectrum of program components. TheMESA model includes learning community clusters of linked math, science and engineeringclasses, academic enrichment workshops to supplement student learning, tutoring and mentoringassistance, participation in national science and engineering related organizations, opportunitiesfor NSF S-STEM and other scholarships, and an Industry Advisory Board.MESA Center activities include:1) Development of individual student academic plans for MESA students;2) Assistance in applying for S-STEM or other science and
for Undergraduate Engineering and Computer Science Studies and more recently as the Associate Chair of the Electrical and Computer Engineering Department. He has developing interests in international education and has a faculty appointment at Pyongyang University of Science and Technology, DPRK. Page 23.1054.1 c American Society for Engineering Education, 2013 Scholarships for Academic Success Program: A Final ReportAbstractThe primary goal of the Scholarships for Academic Success (SAS) Program, funded through anNSF S-STEM grant, was
research in the areas of recruitment and retention. A SWE and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering. Page 23.1265.1 c American Society for Engineering Education, 2013 The Transfer Experience for Upper Division Engineering and Computer Science StudentsAbstractSince 2002 an academic scholarship success and professional development program has beenheld at Arizona State University for transfer and non-transfer students supported by NationalScience Foundation CSEM and S-STEM grants for scholars in engineering and
courses in computer engineering, primarily in designing digital systems for hardware. She is the PI for Scholars in Engineering (SiE), an NSF S-STEMS scholarship for undergraduate and Master’s students. She is a member of the Morgan team that is developing online laboratory courses for undergraduate students. Her research expertise is in algorithm optimization for FPGA implementation and her research group has developed a novel biologically inspired image fusion algorithm. She has over 35 journal and conference publications combined.Prof. Kenneth A Connor, Rensselaer Polytechnic Institute Kenneth Connor is a professor in the Department of Electrical, Computer, and Systems Engineering, where he teaches courses on plasma
providevery large offers may attract outstanding students who may have otherwise attended otherinstitutions, but changing which institutions the students attend may not increase the number ofunderrepresented students in the profession. In addition, the scholarship awards need to becomplemented with academic support programs so that students persist to graduation.In this paper, these ideas will be illustrated using results from a National Science Foundation(NSF) Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) projectthat targets students from underrepresented groups who have financial need, but do not qualifyfor university-level scholarships. The project provides scholarships of full in-state tuitionsupport for up to four
student participation in undergraduateresearch, internships, and co-op experiences to determine the effect on retention.AcknowledgementUSA-LINK is funded by the National Science Foundation, Division of UndergraduateEducation. S-STEM Award # 1060197References[1] Duggan, M. H., and J. W. Pickering, “Barriers to transfer student academic success andretention,” Journal of College Student Retention: Research, Theory, & Practice, 9(4), 2008, 437-459.[2] Landis, Ray, “Retention by Design: Achieving Excellence in Minority Student Education.”http://www.ecs.csun.edu/ecs/facultystaff.html, Oct. 2005.[3] Stephan, Elizabeth A., et. al., Thinking Like an Engineer, Pearson, N.J., 2013
Commonwealth of Virginia. His research activities have been in the area of digital communication systems and coding theory. He is currently a co-PI on the NSF S-STEM grant at Rowan University, whose goal is to increase the number of technically proficient graduates who will contribute to the economic vitality of the region. Page 23.327.2 c American Society for Engineering Education, 2013 CONFIGURATION AND ASSESSMENT OF A SENIOR LEVEL COURSE IN BIOMETRIC SYSTEMSABSTRACTIt is very important that modern topics be covered at the senior undergraduate level inorder that students benefit
biomedical engineering from Rutgers, The State University of New Jersey. She coordinates the departmental graduate program and teaches both undergraduate and graduate courses in computer engineering, primarily in designing digital systems for hardware. She is the PI for Scholars in Engineering (SiE), an NSF S-STEMS scholarship for undergraduate and Master’s students. She is a member of the Morgan team that is developing online laboratory courses for undergraduate students. Her research expertise is in algorithm optimization for FPGA implementation and her research group has developed a novel biologically inspired image fusion algorithm. She has over 35 journal and conference publications combined.Mrs. LaDawn E. Partlow M
the NSF-funded S- STEM program at UCF entitled the ”Young Entrepreneur and Scholar(YES) Scholarship Program” as well as the NSF-funded STEP program entitled ”EXCEL:UCF-STEP Pathways to STEM: From Promise to Prominence.” Dr. Young’s interests are in improving STEM education.Dr. Michael Georgiopoulos, University of Central Florida Michael Georgiopoulos received the Diploma in EE from the National Technical University in Athens, his MS degree and Ph.D. degree in EE from the University of Connecticut, Storrs, CT, in 1981, 1983 and 1986, respectively. He is currently a Professor in the Department of EECS at the University of Central Florida in Orlando, FL. From September 2011 to June 2012 he served as the Interim
after-school care: Are there beneficial effects of after-school programs?” Child Development, Vol. 65, pg. 440-456. 1994.14. Schinke, S., Cole, K. C., and S. R. Poulin. “Evaluation of Boys and Girls' Club of America's Educational Enhancement Program”. Atlanta, GA: Author. 1998.15. Tierney, J., Grossman, J., and N. Resch. “Making a Difference: An Impact Study of Big Brothers/Big Sisters.” Philadelphia: Public/Private Ventures. November, 1995.16. Wilson, Z. S., Iyengar, S. S., Pang, S. S., Warner, I. M., and C. A. Luces. “Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University.” Journal of Science Education and Technology, 1-7. 2011.17. Herrera, F. A., and S
invited presentations - 13 plenary - at international and national forums, conferences and corporations. Since 1994, he has directed an extensive engineering mentoring-research academic success and professional development (ASAP) program that has served over 500 students. These efforts have been supported by NSF STEP, S-STEM, and CSEM grants as well as industry. Dr. Rodriguez’ research inter- ests include: control of nonlinear distributed parameter, and sampled-data systems; modeling, simulation, animation, and real-time control (MoSART) of Flexible Autonomous Machines operating in an uncertain Environment (FAME); design and control of micro-air vehicles (MAVs), control of bio-economic systems, renewable resources, and
oof art (educattion)and envirronmental en ngineering, with w an apprreciation for aesthetics aand the compplex relationshipsbetween people, objeects and placces on the on ne hand, and training in ssustainable ddesign andnatural syystems on thhe other. Givven the diverrsity of fieldss under the S STEM and S STEAMumbrellaas, it is evident that the coourse describ bed here connstitutes a paarticular takee on STEAM Meducation n. We argue that this uniique combin nation of art eeducation, eenvironmentaal engineerinngand landsscape architeecture provid ded a valuab ble standpoinnt from whicch to generatte