Research Center. Her research focuses on how identity, among other affective factors, influences diverse students to choose engineering and persist in engineering. She also studies how different experiences within the practice and culture of engineering foster or hinder be- longing and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chem- ical Engineering and Ph.D. in Engineering and Science Education. Her research earned her a National Science Foundation CAREER Award focused on characterizing latent diversity, which includes diverse attitudes, mindsets, and approaches to learning to understand engineering students’ identity development. ©American Society for
University Alexandra Jackson is a second year PhD student at Rowan University seeking a specialization in Engi- neering Education. She began her research in Rowan’s Experiential Engineering Education Department in the Fall of 2019, and has developed interests in entrepreneurial mindset and student development. In particular, she is interested in assessment of entrepreneurial mindset through both quantitative and quali- tative methods, and is currently working in both survey and concept map assessment. She was awarded an NSF Graduate Research Fellowship in April, 2022, and hopes to continue her research in entrepreneurial mindset assessment using narrative inquiry.Dr. Cheryl A. Bodnar, Rowan University Dr. Bodnar is an
of growth mindsets than their White peers,yet they also reported lower levels of fixed mindsets [13]. Said differently, Ge et al.’s [13] cross-sectional study showed that White engineering students demonstrate a higher predispositiontowards a growth mindset and a higher predisposition towards endorsing a fixed view of theirabilities. An exploratory study aimed at understanding the relationship between students’engineering identity and mindsets longitudinally found that both a fixed and a growth mindsetwere positive predictors of identity [14]. However, the authors did acknowledge that there may bemoderating effects not considered in the model, such as course difficulty, that may also helpexplain the positive relationships [14]. The studies
programsoptimize curricula to prepare students for a data-driven profession.Engineering identity is a dynamic construct evolving throughout students' academic experiences,encompassing technical competence and a sense of belonging in the engineering community [4],[5]. Key factors include performance/competence beliefs, interest, and recognition from peers andmentors [6]. Meanwhile, data skills have become crucial for engineering graduates [2], thoughintegrating data science into engineering curricula varies across institutions [9]. Recent studies [1],[7], [8] have begun exploring the link between data proficiency and engineering identity, butfurther research is needed to clarify how specific data skills influence identity formation.Understanding how
information to those involved in undergraduateresearch, without the student’s perceptions of the URE’s impact on their sense of researcheridentity, the degree to which they may benefit students remains unknown. In developing a clearerunderstanding of how students participating in UREs perceive their researcher identity, thoseinvolved in these experiences can better tailor engagement to enhance undergraduates’experiences.Researchers who study UREs have explored some of the broader student outcomes in a varietyof contexts (e.g., biomedical engineering, mechanical engineering, science) [5], [6], [7]. Thiswork and other work has expanded the body of knowledge about students’ experiences inundergraduate research beyond skill development and career
. Bork and J.-L. Mondisa, “Engineering graduate students’ mental health: A scoping literature review,” Journal of Engineering Education, vol. 111, no. 3, pp. 665–702, 2022, doi: 10.1002/jee.20465.[13] Council of Graduate Schools, “Completion and Attrition in STEM Master’s Programs: Pilot Study Findings.” Council of Graduate Schools, 2013.[14] G. C. Fleming et al., “The fallacy of ‘there are no candidates’: Institutional pathways of Black/African American and Hispanic/Latino doctorate earners,” Journal of Engineering Education, vol. 112, no. 1, pp. 170–194, 2023, doi: 10.1002/jee.20491.[15] E. Hocker, E. Zerbe, and C. G. P. Berdanier, “Characterizing Doctoral Engineering Student Socialization: Narratives of Mental Health
], many universities and colleges have sought to introduceglobal programming to engineering as part of extracurricular or formal programming. Many ofthese are framed around global study abroad experiences, with scholars noting that even short-term experiences can lead to heightened understandings of globalization and cultural awareness[37]-[39]. However, the continuous limitations of privilege, cost, and time additions on degreecompletion continue to be evident, and rarely have extended to graduate student populations (withthe exception of a few instances noted in literature via NSF IGERT programs and similar, such asthe study performed by Berdanier et al. [40]). Literature documenting these programs also considerwhether and how intercultural
.[15] C. Poor and S. Brown, “Increasing retention of women in engineering at WSU: A model for a women’s mentoring program,” Coll. Stud. J., vol. 47, no. 3, pp. 421-428, Sept. 2013[16] P. R. Hernandez, B. Bloodhart, R. T. Barnes, A. S. Adams, S. M. Clinton, I. Pollack, E. Godfrey, M. Burt, and E. V. Fischer, “Promoting professional identity, motivation, and persistence: Benefits of an informal mentoring program for female undergraduate students,” PLoS ONE, vol. 12, no. 11, Nov. 2017, Art. no. E0187531, doi: 10.1371/journal.pone.0187531.[17] O. Pierrakos, T. K. Beam, J. Constantz, A. Johri, and R. Anderson, “On the development of a professional identity: Engineering persisters vs engineering switchers
and identity in engineering change after this research experience ● How interaction and communication with graduate student mentors contributes to student sense of belonging.Further, this study raises questions that deserve future study, such as: ● How does mentoring undergrads impact grad students? ● How might training better prepare grad and faculty mentors to supervise REU students? ● Does doing research work contribute to students’ perception of research as a human practice? Given this ability to focus on the nuanced meanings that students draw from theirexperiences, we suggest that this method can better empower students from underrepresentedgroups, whose voices can be buried in large datasets of quantitative
.[14] Kang, N. H. (2008). Learning to teach science: Personal epistemologies, teaching goals, and practices of teaching. Teaching and Teacher Education, 24(2), 478-498.[15] Montfort, D., Brown, S., & Shinew, D. (2014). The personal epistemologies of civil engineering faculty. Journal of Engineering Education, 103(3), 388-416.[16] Carberry, A., Ohland, M., & Swan, C. (2010, June). A pilot validation study of the epistemological beliefs assessment for engineering (EBAE): First year engineering student beliefs. In 2010 Annual Conference & Exposition (pp. 15-71).[17] Corlett, S., & Mavin, S. (2018). Reflexivity and researcher positionality. The SAGE handbook of qualitative business and management research methods
. Her research interests center on interdisciplinary learning and teaching, technology-integrated STEM teaching practices, and assessment development and validation in STEM education.Dr. Daniel S. Puperi, The University of Texas at Austin Daniel is an assistant professor of instruction in the Department of Biomedical Engineering at the Uni- versity of Texas at Austin. Dan received a BS in aerospace engineering from Purdue University and then worked at NASA Johnson Space Center for 15 years before pursuing a PhD in Bioengineering from Rice University. In 2016, Dan graduated from Rice and began teaching four design/laboratory courses required for all undergraduate BME students at UT Austin.Thomas E. Lindsay, The University
education that contribute to student’s worseningmental health: the ubiquity of stress, professors not being sympathetic, certain exam formats, 5-year degreeprograms sold as 4-year programs, ties to the military and government, a culture of silence, and anenvironment dominated by men.Our own quantitative exploration of the relationship between engineering culture and help-seeking attitudesstarted with a pilot study of engineering undergraduates at two institutions (n=79) which helped frame thestudy discussed in this paper [42]. We found evidence of a negative correlation between student stigmaabout MHCs and help-seeking attitudes [42]. Elements of self-stigma did not correlate significantly withhelp-seeking attitudes, confirming that social-stigma
engineering graduate student at the University of Nebraska—Lincoln. Before returning to further his university education with a B.S. in Mechanical Engineering and a serendipitous opportunity for graduate education at UNL, he served for the better part of a decade as a public-school educator, creating and implementing exploratory STEM activities as supplemental curriculum for K-8 students.Dr. Tareq Daher, University of Nebraska - Lincoln Tareq Daher graduated from the University of Mutah – Jordan with a B.S. in Computer Science with a focus on developing educational tools. He pursued a Master’s Degree in Educational Studies at the University of Nebraska -Lincoln (UNL). While pursing his Master Degree he worked as the
, Faculty Understanding, Belongingness, Thriving,Mindfulness, and Motivation. T-tests and ANOVA models are employed to analyze variations inresponses among students based on a host of demographic identifiers. Pilot results from the firstadministration of the survey include, for example, statistically significant lower reported levelsof thriving and mindfulness for students who identify as LGBTQIA+ than those who do not, aswell as far lower levels of ecosystem health overall for students who do not have access to stablehousing. Additional statistically significant results are identified on the bases of students’ gender,race/ethnicity, disability status, veteran status, undergraduate versus graduate student status,college of study, employment
and students of color.Ms. Sarah Jane (SJ) Bork, University of Michigan Sarah Jane (SJ) received her B.S. and M.S. in Electrical and Computer Engineering from the Ohio State University in 2017, and her M.S. in Engineering Education Research from the University of Michigan in 2020. As a doctoral candidate in Engineering Education Research at the University of Michigan, Ann Arbor, Sarah is studying the mental health experiences of engineering graduate students.Kayleigh Merz, University of Michigan Kayleigh Merz (she/her) is a recent master’s graduate in Higher Education from the University of Michi- gan. She earned a B.S. in Cognitive Science from the University of Michigan, and associate degrees in Mathematics
Paper ID #38410Illuminating Contexts that Influence Test Usage Beliefs and Behaviorsamong Instructors of Fundamental Engineering CoursesKai Jun Chew, Embry-Riddle Aeronautical UniversityDr. Holly M. Matusovich, Virginia Polytechnic Institute and State University Dr. Holly Matusovich is the Associate Dean for Graduate and Professional Studies in the College of Engineering at Virginia Tech and a Professor in the Department of Engineering Education where she has also served in key leadership positions. Dr. Matusovich is recognized for her research and leadership related to graduate student mentoring and faculty development. She won
Paper ID #43149Identifying Curriculum Factors that Facilitate Lifelong Learning in AlumniCareer Trajectories: Stage 3 of a Sequential Mixed-Methods StudyNikita Dawe, University of Toronto PhD student in the Department of Mechanical and Industrial Engineering at the University of Toronto, Collaborative Specialization in Engineering Education.Amy Bilton, University of TorontoMs. Lisa Romkey, University of Toronto Lisa Romkey serves as Associate Professor, Teaching and Associate Director, ISTEP (Institute for Studies in Transdisciplinary Engineering Education and Practice) at the University of Toronto. Her research focuses on
positions. After two yearsof working as engineers and completing technical, design, and professionalism credits, studentsgraduate with a B.S. in Engineering. Participants in this study are a part of the IRE STEMScholars program, which helps financially support low-income, high achieving students for theirBell Academy semester, and provides additional mentorship and career development supportresources through to graduation. This program supports a diverse population of individuals ontheir pathway to graduation, with a range of backgrounds and experiences [1].This work will notfocus solely on low-income experiences, but rather the more nuanced identities and experiencesof the students [2].Engineering Identity and BelongingEngineering identity is
connections towardslearning engineering concepts. To achieve this objective the following research question wasexamined, ‘How do undergraduate engineering students understand and perceive learning throughthe cognitive domain of learning?’ A qualitative research design approach was used, and theinterview questions were designed based on the six hierarchy levels of cognitive domain(knowledge, comprehension, application, analysis, synthesis, and evaluation).ProcedureThe different steps used in this study include IRB approval, pilot interview, participantsrecruitment, and conducting interviews are described in this section. First, the study and theinterview protocol were approved by the Institution Review Board (IRB). The pilot interview wasconducted
. Martin, F., & Bolliger, D. U. (2018). Engagement matters: Student perceptions on the importance of engagement strategies in the online learning environment. Online learning, 22(1), 205-222.25. Shackelford, J. L., & Maxwell, M. (2012). Contribution of learner–instructor interaction to sense of community in graduate online education. Journal of Online Learning and Teaching, 8(4).26. Saldaña, J. (2021). The coding manual for qualitative researchers. The coding manual for qualitative researchers, 1-440.27. Kittur, J. & Tuti, S. (2024). Conducting Qualitative Research Study: A Step-by-Step Process. Journal of Engineering Education Transformations. 28. Chakraborty, M., & Muyia Nafukho, F. (2014
review. For example, Asimakopoulos et al. (2019) examined engineering students’ESE using a quantitative method. However, it was not clear whether the ESE instrument adoptedin their study measured individuals’ self-concept or self-efficacy, and the items were not createdto reflect the content of general entrepreneurship education programs. Therefore, based on priorresearch, a theoretically and empirically grounded ESE instrument for engineering students istimely needed. Based on the refined ESE instrument by McGee et al. (2009), we adapted andcreated items that assessed engineering students’ ESE. Phase 2: Item piloting In Phase 2, we aimed to pilot the items that were consistent with the entrepreneurshipeducation course content from
following research question wasexamined, ‘How do undergraduate engineering students understand and perceive learning throughthe affective domain of learning?’ A qualitative research design approach was used, and theinterview questions were designed based on the five hierarchy levels of affective domain(receiving, responding, valuing, organization, and characterization).ProcedureThe different steps used in this study include IRB approval, pilot interview, participantsrecruitment, and conducting interviews are described in this section. First, the study and theinterview protocol were approved by the Institution Review Board (IRB). The pilot interview wasconducted with an undergraduate engineering student randomly selected from the population toassess
Paper ID #37272An Analysis of Low-Scoring Blind and Low-Vision Individuals’ SelectedAnswers on a Tactile Spatial Ability InstrumentDaniel Kane, Utah State University Daniel Kane is a graduate student at Utah State University pursuing a PhD in Engineering Education with a concurrent master’s degree in Civil Engineering. His research interests focus around the study of spatial ability with an emphasis on identifying patterns of spatial strategies and measuring spatial ability in blind and low vision populations.Dr. Natalie L. Shaheen Dr. Natalie L. Shaheen is an assistant professor of blind education at Illinois State
-view.Methods:Participants. Male engineering students (4 students grouped into 2 dyads) who previously passedor who were concurrently enrolled a Mechanics of Materials course from various disciplines,grade levels, and coursework experiences were convenience sampled from a small summersession of a Mechanics of Materials lab to participate in the pilot study. The study took place at apredominately white Midwest university. Enrollment during the summer session for this coursewas eight students, four of which were either not able to attend the study or data was excludedbased on no gesture or speech during reasoning. In general, the Mechanics of Materials lab offersa hands-on environment to observe and physically experience the concept of torsion, as well asthe formal
caring that includes both comfortwith faculty and empathetic faculty understanding from the same author.Discrimination (25 items)Discrimination is an active process that influences belonging in engineering (McGee, 2020). Toaccount for this potential, we adapted and included five items across five different identity-axes(race/ethnicity, gender, sexual orientation, (dis)ability, and socioeconomic status) from Bahnsonet al.’s (2022) work on discrimination in engineering graduate student experiences.Comfort and Team Inclusion (19 items)We believe feelings of discrimination and differences in belonging are also seen through students’comfort and inclusion on their team. As such, we included items based on these topics. Like othersabove, these scales
intothe characteristics of the population. These elements contribute to individuals’ backgroundfactors and influence what might be included or omitted in the pilot survey. For instance, gender-based differences may lead male students to report a greater perceived capacity to complete anundergraduate engineering program compared to their female counterparts [13]. Consequently,both the pilot study and the ensuing questionnaire should incorporate inquiries aboutdemographic information and other pertinent details related to background factors andpersonality variables, ensuring a comprehensive understanding of the surveyed population.Questionnaire DevelopmentAfter formulating a pilot survey, a comprehensive questionnaire can be constructed to delve
of Experiential Engineering Education. She earned her PhD in civil and environmental engineering from the University of Delaware in 2024. Rachel’s research interests include engineering education and sustainability in engineering, and she has engaged in specific projects regarding mental health in engineering students, K-12 engineering education, sustainable technologies for food waste management, and biological waste treatment.Miss Patricia Lynn Hurley, University of Delaware Patricia Hurley is a graduate student studying environmental engineering at the University of Delaware. ©American Society for Engineering Education, 2025 WIP: Introducing thriving in a first-year engineering
reducing bias and enhancing academic integrity. The systemwas piloted in undergraduate chemical engineering courses, providing initial evidence of itsviability. Through a comprehensive analysis comparing student outcomes under traditional andanonymous grading methods, the study seeks to empirically validate the effectiveness ofanonymous grading in improving student performance and psychological well-being,contributing to the development of more equitable educational practices.IntroductionAcademic evaluation has traditionally been dominated by exams and quizzes. While widelyused, these conventional approaches have come under scrutiny for their potential to perpetuateimplicit biases. Among these, the halo and horn effects [1][2] stand out, where an
industrystakeholders. Both quantitative and qualitative responses were collected from the panelistsduring three rounds of the Delphi study and used to develop a visual framework for the processof engineering judgment. The framework was also translated to a written definition.The preliminary framework is being pilot tested in the spring 2025 semester in design and dataanalysis courses. Specifically, the framework is being used to develop educational materials fordirect instruction on engineering judgment as well as tools to assess the presence and nature ofengineering judgment in the students’ work products and perspectives. The framework andexpanded definition will be re-circulated to the Delphi panel following the pilot testing. Thiswill be done to establish
between authentic engineering learning and student engagement [35],professional identity or learning interest [36] , student-perceived learning outcomes [37], reasonableassumptions and problem-solving abilities [32], engineering learning self-efficacy [38] and so on.RESEARCH PURPOSEThe current study was situated in the engineering learning in communities of practice. Communities ofpractice were seen as an effectively collaborative learning situations with a group of learners sharingprofessional knowledge and common career enthusiasm. In our previous study, we found community ofpractice is an important engineering learning context and engineering learning happening in communitiesof practice usually focused on solving the authentic engineering