have been calls to develop and deploy graduate STEM education modelsthat prepare students for careers outside academia. Few innovations have emerged to meet students attheir current skill and preparation levels when entering their graduate studies while also consideringstudents' individual desired career paths. The U.S.'s current approach to graduate STEM education doesnot emphasize preparing students with professional skills and experience outside the lab. Further,students from differing socioeconomic and underserved backgrounds are often not adequatelysupported. Through a National Science Foundation Innovations in Graduate Education (IGE) award, theUniversity of Pittsburgh Swanson School of Engineering is creating and validating a
to tackle complex engineering education problems across the learner life span. ©American Society for Engineering Education, 2025 Development of a Diagnostic Tool to Identify Graduate Students' Self- Determined CommunicationAbstractEffective communication is essential for the professional development and preparation ofgraduate engineering students, yet existing instruments do not adequately define and assess howstudents develop autonomy, competence, and relatedness in academic discourse. Grounded inSelf-Determination Theory (SDT), this study presents the Communication & Facilitation ofLearning in Oral & Written Scholarship (COMM-FLOWS) diagnostic tool, a novel
projects including conference papers, journal articles, thesisproposals, and research applications. Due to our university’s focus, the participants were allstudying STEM-related fields, with some of our highest attendance over the past five yearscoming from the departments of Chemical & Biological Engineering, Chemistry, Civil andEnvironmental Engineering, Mechanical Engineering, Metallurgical and Materials Engineering,and Physics. Although there is a graduate program in the Humanities, Arts, and Social Sciencesdepartment, no graduate students from that program ever attended, making our results unique inrelation to other studies. Attendance was kept, so if students didn’t attend a specific day, theyweren’t sent the daily reflection survey
M. Orgill, “Applications of Systems Thinking in STEM Education,” Journal of Chemical Education, vol. 96, no. 12, pp. 2742–2751, May 2019, doi: 10.1021/acs.jchemed.9b00261.[5] E. K. Talley and R. B. Hull, “Systems thinking for systems leadership: promoting competency development for graduate students in sustainability studies,” International Journal of Sustainability in Higher Education, Jan. 2023, doi: 10.1108/ijshe-11-2021-0489.[6] P. M. Senge, The fifth discipline: the art and practice of the learning organization. New York: Doubleday/Currency, 1990.[7] C. L. Dym, A. M. Agogino, O. Eris, D. D. Frey, and L. J. Leifer, “Engineering Design Thinking, Teaching, and Learning,” Journal of Engineering Education, vol. 94, no. 1
ofstudents from underrepresented populations, such as women of color and members of theLGBTQIA+ community, through degree completion. Using an intersectional approach, wedeveloped a scale to assess multiple climate factors associated with organizational commitmentor member retention, many of which are particularly salient to the experiences of students frommarginalized or minoritized identities. We took several steps to create the scale, includingface/content validity analysis, exploratory factor analyses for validity evidence, and internalconsistency for reliability evidence. The survey also includes demographic items to capture therespondents’ complex social identities. During the summer and fall of 2023, we collected ourfirst pilot study data of
Paper ID #47976Perception and Adaptation of First-Year International Graduate StudentsTowards Academic Writing: A Case Study at a School of EngineeringMr. Samuel Sola Akosile, Morgan State University Samuel Akosile is a Ph.D. student in Sustainable Infrastructure and Resilience Engineering at Morgan State University, within the Department of Civil Engineering. He currently works as a Research Assistant, contributing to innovative studies in the field of civil infrastructure. His primary research area focuses on sustainable design for pavement systems, aiming to develop environmentally responsible, durable, and cost
engineering doctoral education: Experiences of students with minoritized sexual identities. Annual Meeting of the American Educational Research Association; Denver, CO.[5] Ehrhart, M. G., Schneider, B., & Macey, W. H. (2013). Organizational Climate and Culture: An Introduction to Theory, Research, and Practice. New York: Routledge. https://doi.org/https://doi.org/10.4324/9781315857664[6] Ehrhart, M., & Schneider, B. (2016). Organizational climate and culture. Oxford Research Encyclopedia of Psychology.[7] Schneider, B., & Barbera, K. M. (2014). The Oxford handbook of organizational climate and culture. Cheltenham, UK: Oxford University Press.[8] Hurtado, S., Milem, J. F., Clayton-Pedersen, A. R., & Allen, W. R
], and genre analysis [9] to establish a communication-focusedcommunity of practice [10]-[11] in an EER PhD program at a large, mid-western university. Bydocumenting this project in its pilot phase and the role of our unique expertise in itsdevelopment, we hope to achieve two goals: 1.) to encourage other EER programs to address andexplore the specific challenges and needs of students transitioning from engineering technicaldomain undergraduate programs to EER graduate programs; 2.) to demonstrate how EERprograms can leverage expertise of faculty from writing studies and technical communication todevelop evidence-based practices that support students’ transition.IntroductionGraduate programs within engineering education aim to help students
.1742-1241.2011.02659.x.[8] S. M. Van Anders, “Why the academic pipeline leaks: Fewer men than women perceive barriers to becoming professors,” Sex Roles, vol. 51, no. 9–10, pp. 511–521, Nov. 2004, doi: 10.1007/S11199-004-5461-9/METRICS.[9] R. Ysseldyk et al., “A leak in the academic pipeline: Identity and health among postdoctoral women,” Front. Psychol., vol. 10, no. JUN, p. 1297, Jun. 2019, doi: 10.3389/FPSYG.2019.01297/BIBTEX.[10] N. D. Jackson, K. I. Tyler, Y. Li, W. T. Chen, C. Liu, and R. Bhargava, “Keeping current: An update on the structure and evaluation of a program for graduate women interested in engineering Academia,” in ASEE Annual Conference and Exposition, Conference Proceedings
Paper ID #48690Developing a survey instrument to measure graduate students’ mental healthexperiences: instrument generation and initial qualitative validationDr. Sarah Jane Bork, University of Georgia Dr. Sarah Jane (SJ) Bork is an Assistant Professor in Electrical and Computer Engineering with an emphasis on engineering education research. Dr. Bork’s research has focused on examining the mental health experiences of engineering graduate students. She has studied different areas (e.g., social factors, engineering culture, etc.) using a variety of research methods (e.g., regression analysis, photovoice, factor analysis
Lab became ourprimary field site. The participant-observations in the AP Lab are ongoing.The AP Lab is a material science and engineering lab whose research agenda revolves around thedevelopment of new polymers and the fabrication of microelectronic implantable devices. At thebeginning of the data collection, the AP Lab included approximately 17 lab members includingthe PI, lab director (a postdoc researcher, marked with PDM in subsequent analysis), twopostdoctoral researchers, and graduated students (some of them interns at local companies). Outof this group, eleven lab members—a lab director and ten graduate students—consented toparticipate in our study. These members were regularly attending online lab meetings during theCOVID-19 pandemic
multilingual writers inengineering and the potential of corpus-based writing instruction, the current study creates alanguage module in a form of tutoring intervention and assesses its effectiveness on fourmultilingual graduate students in Mechanical Engineering. Using a genre- and discipline-specific corpus consisting of 150 published empirical articles and 32 graduate students’manuscripts in Mechanical Engineering, the tutoring presents authentic and meaningful textsas linguistic reference. In so doing, the instructor can be saved from make discipline-inappropriate choices such as choosing an expression common in general academic Englishbut infrequent in Mechanical Engineering. By comparing sentence-level features betweenexpert and student writing
undergraduate research programming was thoroughly disrupted due to the COVID-19pandemic, it became evident that incoming graduate students may not have had the opportunityto fully prepare for the changes experienced in the first semester of graduate school. To ease thistransition, the Center for Nanoscale Science, a National Science Foundation Materials ResearchScience and Engineering Center (NSF-MRSEC) at Penn State University, developed theGraduate Research Experience and Transitioning to Grad School (GREaT GradS) programinitially for the summer of 2021 as a 6-week, graduate school summer foundational program forincoming students in disciplines spanning engineering, materials science, chemistry, and physics.After a successful pilot in 2021, the
interviews with each participant is provided below.Participant 1 (P1): P1, a fifth-year architectural engineering graduate student, initially intendedto pursue a master's degree and enter industry but decided to stay for a Ph.D. due to his passionfor research. He learned about the seminar through his wife and enrolled to gain valuableknowledge and feedback without dedicating excessive time. P1's expectations included learningabout the interview process, preparing application materials, and exploring non-academicopportunities. The seminar broadened his understanding of career options, provided insights intocrafting application documents, and facilitated peer review. He believes the seminar surpassedhis expectations to some extent, although he
Director of Assessment and Research team at the Siebel Center for Design (SCD) at the University of Illinois at Urbana-Champaign. I work with a group of wonderful and talented people at SCD’s Assessment and Research Laboratory to conduct research that informs and evaluates our practice of teaching and learning human-centered design in formal and informal learning environments. My Research focuses on studying students’ collaborative problem solving processes and the role of the teacher in facilitating these processes in STEM classrooms. ©American Society for Engineering Education, 2025Integrating Service-Learning and the Entrepreneurial Mindset in aTeaching and Leadership Course for Graduate