have been calls to develop and deploy graduate STEM education modelsthat prepare students for careers outside academia. Few innovations have emerged to meet students attheir current skill and preparation levels when entering their graduate studies while also consideringstudents' individual desired career paths. The U.S.'s current approach to graduate STEM education doesnot emphasize preparing students with professional skills and experience outside the lab. Further,students from differing socioeconomic and underserved backgrounds are often not adequatelysupported. Through a National Science Foundation Innovations in Graduate Education (IGE) award, theUniversity of Pittsburgh Swanson School of Engineering is creating and validating a
M. Orgill, “Applications of Systems Thinking in STEM Education,” Journal of Chemical Education, vol. 96, no. 12, pp. 2742–2751, May 2019, doi: 10.1021/acs.jchemed.9b00261.[5] E. K. Talley and R. B. Hull, “Systems thinking for systems leadership: promoting competency development for graduate students in sustainability studies,” International Journal of Sustainability in Higher Education, Jan. 2023, doi: 10.1108/ijshe-11-2021-0489.[6] P. M. Senge, The fifth discipline: the art and practice of the learning organization. New York: Doubleday/Currency, 1990.[7] C. L. Dym, A. M. Agogino, O. Eris, D. D. Frey, and L. J. Leifer, “Engineering Design Thinking, Teaching, and Learning,” Journal of Engineering Education, vol. 94, no. 1
ofstudents from underrepresented populations, such as women of color and members of theLGBTQIA+ community, through degree completion. Using an intersectional approach, wedeveloped a scale to assess multiple climate factors associated with organizational commitmentor member retention, many of which are particularly salient to the experiences of students frommarginalized or minoritized identities. We took several steps to create the scale, includingface/content validity analysis, exploratory factor analyses for validity evidence, and internalconsistency for reliability evidence. The survey also includes demographic items to capture therespondents’ complex social identities. During the summer and fall of 2023, we collected ourfirst pilot study data of
.1742-1241.2011.02659.x.[8] S. M. Van Anders, “Why the academic pipeline leaks: Fewer men than women perceive barriers to becoming professors,” Sex Roles, vol. 51, no. 9–10, pp. 511–521, Nov. 2004, doi: 10.1007/S11199-004-5461-9/METRICS.[9] R. Ysseldyk et al., “A leak in the academic pipeline: Identity and health among postdoctoral women,” Front. Psychol., vol. 10, no. JUN, p. 1297, Jun. 2019, doi: 10.3389/FPSYG.2019.01297/BIBTEX.[10] N. D. Jackson, K. I. Tyler, Y. Li, W. T. Chen, C. Liu, and R. Bhargava, “Keeping current: An update on the structure and evaluation of a program for graduate women interested in engineering Academia,” in ASEE Annual Conference and Exposition, Conference Proceedings
Lab became ourprimary field site. The participant-observations in the AP Lab are ongoing.The AP Lab is a material science and engineering lab whose research agenda revolves around thedevelopment of new polymers and the fabrication of microelectronic implantable devices. At thebeginning of the data collection, the AP Lab included approximately 17 lab members includingthe PI, lab director (a postdoc researcher, marked with PDM in subsequent analysis), twopostdoctoral researchers, and graduated students (some of them interns at local companies). Outof this group, eleven lab members—a lab director and ten graduate students—consented toparticipate in our study. These members were regularly attending online lab meetings during theCOVID-19 pandemic
multilingual writers inengineering and the potential of corpus-based writing instruction, the current study creates alanguage module in a form of tutoring intervention and assesses its effectiveness on fourmultilingual graduate students in Mechanical Engineering. Using a genre- and discipline-specific corpus consisting of 150 published empirical articles and 32 graduate students’manuscripts in Mechanical Engineering, the tutoring presents authentic and meaningful textsas linguistic reference. In so doing, the instructor can be saved from make discipline-inappropriate choices such as choosing an expression common in general academic Englishbut infrequent in Mechanical Engineering. By comparing sentence-level features betweenexpert and student writing
undergraduate research programming was thoroughly disrupted due to the COVID-19pandemic, it became evident that incoming graduate students may not have had the opportunityto fully prepare for the changes experienced in the first semester of graduate school. To ease thistransition, the Center for Nanoscale Science, a National Science Foundation Materials ResearchScience and Engineering Center (NSF-MRSEC) at Penn State University, developed theGraduate Research Experience and Transitioning to Grad School (GREaT GradS) programinitially for the summer of 2021 as a 6-week, graduate school summer foundational program forincoming students in disciplines spanning engineering, materials science, chemistry, and physics.After a successful pilot in 2021, the
interviews with each participant is provided below.Participant 1 (P1): P1, a fifth-year architectural engineering graduate student, initially intendedto pursue a master's degree and enter industry but decided to stay for a Ph.D. due to his passionfor research. He learned about the seminar through his wife and enrolled to gain valuableknowledge and feedback without dedicating excessive time. P1's expectations included learningabout the interview process, preparing application materials, and exploring non-academicopportunities. The seminar broadened his understanding of career options, provided insights intocrafting application documents, and facilitated peer review. He believes the seminar surpassedhis expectations to some extent, although he