students exhibiting TF and JP tendencies is much smaller. Evidence supports that engineering technology students are less judgmental and able to make decisions objectively when solving problems compared to their peers in engineering.The comparison of data taken from sophomore and junior ranked students in both required andelective courses supports the conclusion that there is a significant difference between engineeringtechnology students and engineering students, most significantly in the way these students learnand in their decision-making processes.ConclusionWhile these two papers are not the extent of engineering technology education literature, theyrepresent some of the work done in this area. Case Study 1 illustrates the
training of the individual. This model is seenin figure 1.Figure 1. Supply Chain Technology Career Pathways Diagram6,(http://www.supplychainteched.org/career-pathways.html, 2015)Ivy Tech Community College is a singly-accredited statewide system with a centralizedcurriculum management system. All high school coursework is standardized through the IndianaDepartment of Education with uniform course objectives, standards and outcome assessments.As such, coursework developed for the high school dual-credit program is delivered with thesame content standards across the state of Indiana and may be applied to a college degreeprogram at any Ivy Tech Community College campus in the state. This allows consistency ofinstruction but also creates an immediate
of 65% of thefinal grade.ResultsStudents initially were not in favor of the flipped classroom format. As shown in Figure 1 below,55% of students responded that they liked the idea worse than a typical lecture. Only 36% ofstudents responded that they liked the idea of the format better. However, just five weeks into thesemester attitudes had already shifted. Only 9% of students said that they liked the format worse,36% said that they liked it better, and 45% said that they liked it much better. This trendcontinued to the end of the semester where 0% of the students said that they like the formatworse. Liked the Format Beginning 5 Weeks End of Semester 60
engineering leadershipdevelopment opportunities. Page 26.486.2INTRODUCTIONThe University of Calgary is located in Canada’s ‘engineering capital’ and has over 4,500 undergraduateand graduate students. Within the school there are approximately thirty clubs, teams, and associations(CTAs) active at any time and the groups are loosely organized into four categories: governance groups(Engineering Students’ Society, department students’ societies, etc.), competitive teams (Solar Car, FSAEFormula 1 racing, etc.), industry affiliated student chapters (IEEE, ASME, etc.), and cultural-socialgroups (Engineers Without Borders, Schulich Soundstage musicians, etc
tutorials are built off of lectures onengineering drawing fundamentals. The geometry shown in Figure 1 is used to train bothorthographic to isometric sketching skills and SolidWorks basics. Further projects requirestudents to follow standard tutorials on assembly generation and creation of complex geometries.These self-guided exercises are augmented by interactive teaching assistant sessions and in-classquestion and answer periods.Figure 1: SolidWorks model from custom tutorial. Students sketch the isometric view of this partfrom orthographic views in an earlier portion of the course.Design for Manufacturing, Freshman YearThe second course during the freshmen year introduces the students to basic manufacturingprocesses through hands on labs
Learning Activity Description The main task in this project was to model all necessary parts, select standard parts fromthe standard parts database in the Computer Aided Design (CAD), assemble all components, andanimate the main assembly of a robotic kit. Students had two possible data sources for their finalproject: one from the textbook6, which included the majority of the parts, and one from the kit,7which included a small autonomous robot. The kit for this project is a four legged walking typeof mechanism: a “mechanical tiger”6. The Mechanical tiger assembly, shown in Figure 1, is apart of the Robocraft Series7, which consists mainly of robots with mechanical and uniquemovement realized via motor. The CAD modeling software used in this
c American Society for Engineering Education, 2015 Interest-based engineering challenges phase I: Understanding students’ personal, classroom, engineering, and career interestsIntroduction Engineering as a K-12 endeavor has formal beginnings as early as 2000 whenMassachusetts included engineering in its state curriculum frameworks1. The past fifteen yearshave seen increased attention on engineering in the K-12 classroom and was recently included inthe Next Generation Science Standards2, a set of national standards for science education thatgive equal attention to the importance of learning engineering. Marzano, Pickering, andMcTighe3 describe five dimensions of learning: (1) positive attitudes and perceptions
business creation.The Lean LaunchPad business development methodologySteve Blank has led the charge for the Lean LaunchPad, a process that guides startups throughthe creation of their business. It’s a process that uses scientific experimentation to validate anentrepreneur’s best guess, or hypothesis, about their business model.1 The entrepreneur willhypothesize what the customer wants, who the customer is, as well as seven other key areaspresented in Alexander Osterwalder’s Business Model Canvas.2 To test the hypotheses, theentrepreneur “gets out of the building” and talks to potential customers and key stakeholders. Ifthe hypothesis is validated, the entrepreneur builds confidence in the viability of his or herbusiness. It’s a process where the
unknown 44.4% 30% (n=4) 20% 10% 7.8% (n=6) 11.1% (n =1) 6.5% (n=5) 0% Course-based Service No Course-based Service Learning Experience (2014) Learning (1998-2013)Figure 1. Initial career selection of students who participated in the course-based service learning experience (2014 graduationdata) as compared to previous graduates (1998
curricularmaterials and pedagogies, which will in turn improve engineering education practice.OverviewThis paper will first briefly outline the context of this collaboration by describing: (1) the generalapproach to adoption that informed the development of the collaboration, and (2) the theoreticalframework of the research that inspired the curricular materials. Note that this project isongoing. For a summary of our previous findings on student understanding (as well as ourrecommendations for instructors), see1–3,7,8, and for our research exploring adoption moregenerally see 7,9,10.Our collaboration was built on a two-day, in-person workshop involving six researchers and 15engineering instructors. Participants formed small groups with at least one
LEAP report, recognizing similar challenges ofglobalization and responding with a similar vision: We are committed to the liberal arts and sciences as a basis for intellectual and personal growth. The University endeavors to prepare women and men for lives of personal and professional service and leadership. The University is aware of the challenges of living in an international community and therefore adopts a global view in its programs and its vision.The University of Evansville seeks to fulfill this mission through its general education program,Enduring Foundations, which is composed of 11 student outcomes: 1. Critical reading and thinking 2. Engagement with imaginative expressions of the human
these elements arewell defined, it is interesting to understand how the principles of stewardship are manifested inPh.D.-holding engineers. Before our work, the Stewardship framework was only applied to sixfields; engineering was not investigated. Past work by our group discusses this framework forengineering Ph.D.s in industry and academic careers14-16. Table 1: Overview of Three Stewardship Tenets as Identified by Golde and Walker12 Stewardship Tenet Definition Conservation Working to conserve the nature of the academic field for the future Generation Creation of new academic knowledge Transformation Translation of expertise to diverse audiences and purposesMethodsData
areinvestigating formulations of concepts and possible learning and assessment activities andcollecting data on their effectiveness. We identify three objectives of Hands-On instruction, 1) toapply instrumentation to make measurements of physical quantities, 2) to identify limitations ofmodels to predict of real-world behavior, and 3) to develop an experimental approach to Page 26.1375.3characterize and explain the world. We have consulted with experts to develop a list of commonmisconceptions students display in laboratory instruction. A unique feature in testing Hands-Onconcepts is that laboratory skills are inextricably tied to analytical concepts and
so, they must alter properties and observe how the simulated systemchanges. For example, we model a spectrophotometer in one simulation, depicted in Figure 1,where students are able to alter the chemical species, concentration, light intensity, wavelength,and so on. Students are tasked with determining unknown reaction rate constants; in order to doso, they must calibrate the spectrophotometer, set reasonable starting concentrations, run thesimulation for sufficient time, and then use the resulting data to determine the reaction rateconstant. However, the steps required to successfully solve for an unknown property can often beaccomplished in a variety of ways, similar to laboratory experimentation; the simulations areopen-ended, allowing
Aeronautical University (ERAU),in Daytona Beach, FL has linked three fundamental engineering courses to provide students witha STEM (science, technology, engineering, and mathematics) small-learning-community (SLC).The same set of students is registered concurrently for the matching Physics I, Calculus I andProgramming for Engineers courses.Table 1 presents the topics taught in each of the STEM SLC courses. The STEM-SLC facultyfocused on creating mini-projects for their courses that would leverage the common topics, theseare the bold faced topics. For detailed results and an in depth-review of examples of thedeveloped mini-projects please refer to the previously published ASEE conference paper4. Table 1: Description of Calculus I, Physics I
receptions for high achievingstudents. Changing the Conversation1 has been a guide for reworking both. At receptions foradmitted students, aimed at increasing yield, very simple-seeming changes have been made.Engineering staff who present are selected to include half women. Students who present are alsocarefully selected for the image they portray. More pictures of people are used in the presentations,and they portray a diverse student body. Overt references to women being underrepresented havebeen removed. Instead, the ways in which the College addresses real-world problems and the diverseCollege faculty who do so, are highlighted. Some sample PowerPoint slides are shown in Figure 1.Figure 1: Sample PowerPoint slides used at recruiting eventsThese
education and identity development. Page 26.298.1 c American Society for Engineering Education, 2015 Building a Community of Practice: Discipline-Based Educational Research GroupsEngineering Education is a growing field. Twenty-three universities have doctoral programs inengineering education while numerous others offer certificates, courses, or the option to pursueengineering education research in traditional engineering disciplines.1 Sixteen institutions haveASEE Student Chapters, offering another way for students who are interested in engineeringeducation research to
publications in the United States, e.g.,“Engage to Excel: Producing One Million Additional College Graduates with Degrees inScience, Technology, Engineering, and Mathematics” [1], “Rising Above the Gathering Storm”[2], “Before It’s Too Late” [3], and “A Nation at Risk” [4]. By 2018, 35% of all STEM jobs willrequire training beyond high school [5]. Yet, only 14% of current college degrees are awarded inSTEM fields [6]. In 2012, the President’s Council of Advisors on Science and Technology(PCAST) submitted a report [1] which emphasizes the need to prepare high school students topursue degrees in STEM. An NSF report [7], argued, “To succeed in this new information-basedand highly technological society, all students need to develop their capabilities in
development teams. Individual student-internsdefined their anticipated roles and determined tentative scopes of work; these roles andresponsibilities encouraged ownership over tasks as teams later reformed around current projectneeds. These early roles are presented in Table 1, corresponding to the student’s major andcategorized by initial development team. Table 1: Initial development teams by team name and their group-level responsibilities as of the first week of theinternship. Group research areas are subdivided into different scopes of work and labeled by academic major. Also shown are the home institutions, where CC: Community College, RU: Research University, and HS: High School Team Name and Academic Major Responsible For
wasprovided by Arduino specialty companies Adafruit18 and Sparkfun19. During the last week of thecourse, each team presented their project and results to the rest of the class, explaining theirapproach and demonstrating the resulting product.Examples of some team projects are:1. High Speed Photo Flash Controller(Photography Major) - Use of a microcontrollerto control timing of a high-speed flash. Theobject shown is a tomato dropped into a glass ofmilk, and the timing is triggered by theinterruption of a laser beam.The microcontroller intercepted the fallingtomato, then accordingly set the time delay forthe high-speed flash to capture the image as theobject landed in the milk.2. Soil Moisture Saturation Instrument (Agriculture Majors) – combined a low
MakerSpace on campus.A level zero block diagram of the current system iteration is shown below.Figure 1: Level 0 block diagram showing major inputs and outputs of the overall system. Amore detailed description is provided subsequently.Development Process: the Capstone Design CourseThe MakerSpace Badging System was developed a team project in a senior capstone designcourse in electrical and computer engineering. This section describes the course in which thesystem was developed. The highly structured capstone design course stretches over an entireyear with a half credit fall course focusing on student team creating multiple representations oftheir design followed by a full credit spring course where the design is realized. At Bucknell onecredit
has seen promising results in boththe pilot courses as well as the follow on initial Calculus course. The goal in conductingthese pilots was to improve student retention and performance in Trigonometry and Pre-calculus. Since the integration of Intellipath into the campus-based classes in January of2015, average pass rates in Trigonometry have increased from 76% to 94%, and averagewithdraw rates have decreased from 36% to 17%, as indicated in Figure 1. Figure 1. Trigonometry Pass and Withdraw Rates 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% January, April, July, 2014 October, January, April, July, 2015 October, 2014 2014 2014
and perceptions regarding engineering.Additionally, changes in teachers’ self-efficacy of teaching engineering and students’ attitudesabout science and engineering were measured. This article discusses the value of elementaryengineering education in rural communities.Keywords: Engineering education; professional development; elementary; rural schoolsIntroduction Science education in elementary (K-6) curriculum is often lacking and leads towidespread lack of preparation and misconceptions about fundamental science ideas in middleand high school students.1 Researchers have documented that elementary classroom scienceinstruction is typically limited and of low quality.2,3,4,5 Further, results from a 2013 nationalsurvey indicated that
students bolsteredhers. Kayla, in contrast, developed self-efficacy over time through a productive partnership witha supportive engineering student. These cases highlight the complex relationship between partnerdynamics, teaching roles, perceived success, and self-efficacy development. Implications forsupporting PSTs in engineering-integrated experiences are discussed. Introduction Nationwide engineering and coding standards in K-6 curriculum [1], [2] make instructionin these subjects essential for elementary teacher preparation. Along with content andpedagogical knowledge, preservice teachers (PSTs) need a belief in their ability to teach, alsoknown as teaching self-efficacy [3], [4]. Accordingly
). Each measure used a seven-point Likert scale 6from (1) strongly agree to (7) strongly disagree. Questions throughout the scales wereappropriately reversed. Demographic information was collected.PositionalityKatharine Getz is a white lesbian who believes in the expansiveness of self, gender, andsexuality. Her motivation to research the experiences of belonging and identity for LGBTQ+undergraduate engineering students comes from her own experiences and observations of herpeers. Her academic background is in chemical engineering, sexuality and gender studies, andengineering education, and her mentor for this project comes from an experienced
significant disadvantage. Many face challenges catching up or may never evenbegin. Research highlights that institutional barriers like these contribute to lower completion ratesamong students from underrepresented gender, racial, and ethnic groups [1]. Similarly, the subjectsof this study i.e., first-generation college students (FGCS) [2] and non-traditional students (NTS)[3] also experience lower rates of degree completion compared to their peers due to the similarreasons. First-generation college students (FGCS) are the first in their immediate families to pursuecollege education (neither of their parents has a bachelor’s degree) [2]. The National Center forEducation Statistics (NCES) identifies seven key traits that distinguish NTS from
current system [1]. Traditionalapproaches to departmental change often emphasize immediate interventions, such asintroducing new courses, adjusting syllabi, or launching short-term faculty developmentworkshops. However, in the absence of deeper shifts, such initiatives can fail to take hold,especially when unanticipated leadership transitions leave newly implemented practices withoutchampions or embedded policies. In this example, the University of Connecticut (UConn) Schoolof Civil and Environmental Engineering (SoCEE), former department of CEE, embraced atransformative vision for engineering education by cultivating a strength-based culture in whichneurodiversity is embraced as an asset [2]. Instead of seeing cognitive variations like
successful collaborativeprogram that positively impacts both the community and partner organizations.IntroductionThe SEECS program has been in operation since the fall of 2009, with NSF S-STEM funding forall but one of those years. The grant activity has always had as a foundational element theuniversity mission which prominently features service to others. This service component hasbeen affected through community-based, engineering-forward projects completed by students inservice of some unmet community need [1],[2],[3]. SEECS has collaborated with variousexternal stakeholders on community-focused projects, engaging with organizations that supportindividuals with disabilities, at-risk youth, veterans, and environmental initiatives
. Leveraging data from a National Science Foundation(NSF) Alliance for Graduate Education and the Professoriate (AGEP) project, we analyzepatterns in graduate student success, retention, and postdoctoral career trajectories in STEMdisciplines at TSU. Our findings reveal differences in faculty development participation,financial support, and degree completion rates, highlighting systemic challenges andopportunities for improvement. This study provides data-driven recommendations for TSUspecifically and for similar institutions, aiming to strengthen research capacity and enhancegraduate student outcomes1. IntroductionThe goal of the NSF’s AGEP program is to “increase the number of historically underrepresentedminority faculty in STEM” [1]. TSU partnered
Department,George Mason UniversityArvin Farid, Ph.D., P.E., Professor, Civil Engineering, Boise State UniversityMojtaba Sadegh, Ph.D., Associate Professor, Civil Engineering, Boise State UniversityRafael da Silva, Ph.D., Assistant Professor, Organizational Performance and Workplace LearningDepartment, Boise State UniversityScott Lowe, Ph.D., Dean, Graduate College, Boise State UniversityKeywords: Graduate degrees, Engineering, Stakeholders, Support system, Higher Education 1 S-STEM: Challenges Stakeholders Face in Supporting Low-Income, First-Generation, and/or Rural Graduate Students There is a growing need to train