Paper ID #12043Problem solving in a multidisciplinary environment: observations from anewly developed programLuciana C. El Debs, Purdue University Luciana Debs, is a Technology doctoral student and Graduate Research Assistant in the Department of Building Construction Management at Purdue Universitys College of Technology. She received her MS from the Technical Research Institute of Sao Paulo (IPT-SP), and her BSArc from the University of S˜ao Paulo (USP), both in Sao Paulo, Brazil. Prior to her current position she worked in design coordination in construction and real estate development companies in Brazil. Her research
culminated in an engineering design activity tied to curriculumcontent.During curriculum exchange copies of the tools will be available to teachers, and examples of teachercreated units using the templates will be shown. Teachers will be able to start to work through anduse the design templates to get a better feel for how they can be incorporated into lesson design.These tools are ideal for use in Lesson Study or Professional Learning Communities, or as part ofco/team teaching.Below is an example of a filled Frame: Page 26.434.2Page 26.434.31. University of Kansas Center for Teaching and Learning, http://www.ku-crl.org.2. Ellis, E. S., (1994
ammonia production? When needed? Expertise available to operate?) - What is your production target? What is the target scale/size/weight? (Hand- pulled or animal-pulled cart, car trunk, tractor, etc.) - Who is going to be the end-user? What expertise you expect they have? Consider different degrees of complexity! A farmer? An explorer? A trained research technician? - What balance do you envision about uses of ammonia: e.g., as fuel, as fertilizer, as a hydrogen source for H2 fuel cells, etc? - What mode(s) of production should you consider? (batch, continuous, other?) - What might affect the optimum pressure and temperature for the production facility, considering the limitations by the
information science; her industry experience includes systems analysis and cognitive science applications. She is one of the Principal Investigators on two NSF S-STEM and one NSF ADVANCE-PAID grants. With a life-long interest in technology and its potential for enhancing human capabilities, her research includes advances in analytics, motivated system energetics, and other topics relative to knowledge-intensive systems.Dr. Karinna M Vernaza, Gannon University Dr. Karinna Vernaza joined Gannon University in 2003, and she is currently a Professor in the Mechanical Engineering Department and Associate Dean of the College of Engineering and Business. She earned her Ph.D. and M.S. in mechanical engineering from the University
stopping short of claimingthat the resultant output is a systematic review” (p.102). As for the differentiated characteristicsof systematized reviews, they described that a systematized review typically omits the step ofquality appraisal with a smaller set of eligible articles but still involves a systematic search,review, and synthesis process. Also, they mentioned that a systematized review can be conductedby one researcher rather than a research team. As a systematized review, this study followedBorrego, Foster, and Froyd (2014)’s steps in conducting a systematic review: identifying a scopeand research questions, defining inclusion criteria, finding and cataloging sources, critique andappraisal, and synthesis. However, this study did not
Paper ID #25824Advancd Design and Fabrication of Prosthetic and Medical DevicesDr. Gaffar Barakat Gailani, New York City College of Technology Dr. Gailani is an associate professor in the Dept. of Mechanical Engineering and Industrial Design Tech- nology. Received his Ph.d in Mechanical Engineering from the City University of New York in 2009. His research work is focused on poroelasticity and its application in biomechanics, additive manufactruring, and medical devices.Dr. Andy Zhang, New York City College of Technology Dr. Andy S. Zhang received his Ph.D. from the City University of New York in 1995. He is currently the
No.1826354. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the authors and do not necessarily reflect the views of the National ScienceFoundationReferences[1] D. Delgado-Bernal, "Critical race theory, Latino critical theory, and critical raced- gendered epistemologies: Recognizing students of color as holders and creators of knowledge," Qualitative inquiry, vol. 8, pp. 105-126, 2002.[2] A. Valenzuela, Subtractive schooling: US-Mexican youth and the politics of caring. Albany, NY: State University of New York Press, 2010.[3] K. S.-S. Colegrove and J. K. Adair, "Countering deficit thinking: Agency, capabilities and the early learning experiences of children of
coordinates training offered by the National Center for Women and Information Technology (NCWIT) to identify and reduce implicit bias throughout the search process. In addition, she runs a faculty devel- opment and leadership program to train and recruit diverse PhD students who wish to pursue academic positions in engineering or applied science after graduation. Dr. Sandekian earned B.S. and M.S. degrees in Aerospace Engineering Sciences at CU Boulder in 1992 and 1994, respectively. She went on to earn a Specialist in Education (Ed. S.) degree in Educational Leadership and Policy Studies in 2011 and a Ph.D. in Higher Education and Student Affairs Leadership in December 2017, both from the University of Northern Colorado
Hayashibara, Embry-Riddle Aeronautical University, Prescott Associate Professor, Department of Aerospace Engineering, College of Engineering c American Society for Engineering Education, 2019 VM High-Performance Computing for Undergraduate Engineering ProjectsINTRODUCTION Parallelized processing, or the process of solving multiple parts of a single problemsimultaneously through the use of many processors (see Fig. 1), is essential for many engineeringand scientific disciplines as projects and mathematical models continue to reach beyond thescope of what can be done by hand. From their inception in the 1960’s, these grid computing (orsupercomputing) systems have advanced so as to come in a variety of sizes
of American Society of Engineering Education AnnualConference, Vancouver, BC, June 2011.[3] M. S. Reid, “The Assessment of Ethical and Sustainable Engineering Studies inUndergraduate University Education,” Proceedings of American Society of EngineeringEducation Annual Conference, Vancouver, BC, June 2011.[4] S. Spierre, E. A. Martin, J. Sadowski, A. Berardy, S. McClintock, S. Augustin, N. Hohman,and J. G. Banna, “An Experiential Pedagogy for Sustainability Ethics,” Proceedings of AmericanSociety of Engineering Education Annual Conference, San Antonio, Texas, June 2012.[5] N. A. Andrade and D. Tomblin, “Engineering and Sustainability: The Challenge ofIntegrating Social and Ethical Issues into a Technical Course,” Proceedings of American
impacts of first-year engineering courses.Though it is likely that there will be common trajectories of community and identitydevelopment from our interview population, unique trajectories are also emerging as we analyzethe data. Understanding these trajectories will allow administrators to make informed decisionsregarding the timing, content, and structure of their FYEP in order to meet their program’s needsand goals.AcknowledgementsThis material is based upon work supported by the National Science Foundation under GrantNos. 1664264 and 1664266. Any opinions, findings, and conclusions or recommendationsexpressed in this material are those of the author(s) and do not necessarily reflectReferences[1] X. Chen, C. E. Brawner, M. W. Ohland, and M
senior students, Engineers Noura Al Dhaheri,Reem Al Nuaimi, Asmaa Al Dhanhani, and Asma Al Hebsi, on the senior design project [4], underthe tutelage of the first author.References[1] J. Huang, F. Ding, T. Fukuda, and T. Matsuno, Modeling and Velocity Control for a NovelNarrow Vehicle Based on Mobile Wheeled Inverted Pendulum, IEEE Transactions on ControlSystems Technology, Vol. 21, No. 5, September 2013[2] Y. Xu, S. K-W. Au, Stabilization and Path Following of a Single Wheel Robot, IEEE/ASMETransactions on Mechatronics, Vol. 9, No. 2, June 2004 407[3] S. Kim and S. Kwon, Nonlinear Optimal Control Design for Underactuated Two-WheeledInverted Pendulum Mobile Platform, IEEE/ASME Transactions on Mechatronics, Vol. 22, No. 6,December 201[4] N. Al
has also worked extensively with high schools to advance student learning success. Malshe’s notable honors include: Membership in the National Academy of En- gineering (NAE) for ”For innovations in nanomanufacturing with impact in multiple industry sectors”; Society of Manufacturing (SME)’s David Dornfeld Blue Sky Manufacturing Idea Award for ”Factories- In-Space”; SME-S.M. Wu Research Implementation Award; three Edison Awards for Innovation; Tibbett Award by the US Small Business Association sponsored by EPA for successful technology transfer; R&D 100 Award, (the ”Oscar” of innovation); Fellowships to the International 1. Academy of Production Engineering (CIRP), 2. the American Society of Materials (ASM), 3
understanding of their stories and get additional information about their identitiesand community development as they progress through their engineering degree pathways. Wewill see if the similarities in their stories persist or begin to diverge, how well they adapted tocivilian life, and how they are affected by the design of FYE courses.AcknowledgementsThis material is based upon work supported by the National Science Foundation under GrantNos. 1664264 and 1664266. Any opinions, findings, and conclusions or recommendationsexpressed in this material are those of the author(s) and do not necessarily reflect the views ofthe National Science Foundation.References[1] N. A. of Engineering., “Educating the engineer of 2020 : adapting engineering education
completion among college students. Learning and Individual Differences, 24, 83-88.[4] Bembenutty, H., & Zimmerman, B. J. (2003). The relation of motivational beliefs and self-regulatory processes to homework completion and academic achievement. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago, Illinois.[5] Cooper, H., Lindsay, J. J., Nye, B., & Greathouse, S. (1998). Relationships among attitudes about homework, amount of homework assigned and completed, and student achievement. Journal of educational Psychology, 90(1), 70.[6] Bonham, S., D. Deardorff, and R. Beichner. 2003. Comparison of student performance using web and paper- based homework in college-level physics. Journal
Engineering at NSFDAWN TILBURY, NSF ASSISTANT DIRECTOR FOR ENGINEERINGASEE ENGINEERING DEANS INSTITU TE, NEW DEANS O RIENTATIO NF EB . 3, 2020 1 NSF champions research and education across all fields of science and engineeringBiological Sciences Engineering Mathematical & Computer & Geosciences Physical Sciences Information S&E (including Polar) Integrative Activities Education & Social, Behavioral & International Science Human Resources Economic Sciences & Engineering
engineering/technology workforce of thefuture, (ii) to develop linkages and articulations with 2-year schools and their S-STEM programs,(iii) to recruit, retain, and graduate 78 low-income students, and place them in industry orgraduate schools, (iv) to generate knowledge about the program elements that can help otheruniversities, and (v) to serve as a model for other universities to provide vertical transfer studentsaccess to the baccalaureate degree.The project is in its fourth year, and has met its recruitment goal of a total of 78 scholars dividedin three cohorts. Our goal is to retain and graduate at least 95% of these scholars.Three key programs that have contributed to our success are: (i) the co-op program facilitated bythe Office of
-based exams were given to the students for the purpose of verifying theirunderstanding of : • The concept of numerical control (CNC) • The concept of 3D modeling and construction plans (CAD) • Toolpath generation (CAM) • Cutting tool selection (CAM) • Cutting parameters (CAM)Entry/Exit AssessmentIn addition to aforementioned evaluations two survey-based assessments were conducted duringfirst and last weeks of the classes. The survey questionnaire along with the numerical studentresponses for the spring of 2006 class are shown in Figure 5. Page 12.44.6 E N TR Y -E X IT AS S E S S M E N T O F IT__
used as supplementary material in a senior-level vibrations course.The fourth module uses Matlab. Student feedback is included.IntroductionThe advent of student-owned personal computers in the early 1980’s sparked an interest inmotion simulation software. The simple notion is that if students are able to see an animation ofthe systems that they are studying, especially for their choice of conditions, then they are muchmore likely to understand the material. A number of investigators1-5 have worked in this area.The history of the motion-simulation modules presented in this paper dates back to the early1980’s when personal computers were first required for undergraduate engineering students atVirginia Tech. The first efforts by the senior author
, TX 78666 AbstractThis paper provides an in-depth analysis to develop (or refine) manufacturing curriculum of anIndustrial Technology, Engineering Technology and Manufacturing Engineering Programs whenthey exist in single educational environment. A single educational environment can be defined asa department(s), school(s), or colleges(s). Such an arrangement provides an opportunity wherethe engineering and technology curriculum blend to offer the students a wide range of experienceand knowledge. In addition, it provides the local communities and industry with integratedworkforce that has a high diversity of engineering and technology skills. This paper is intendedto discuss guidelines, strategies to
resource-basedindustries such as paper or in textile mills which were widely dispersed geographicallyaround the state, the textile mills in the more populous southern part of the state and thepaper mills in the north. In the 1960’s, however, these industries began a slow,precipitous decline which accelerated in the 1970’s and 1980’s. At the same time, newindustries, which required higher skill sets, began locating in the greater Portland area.These included such companies as National Semiconductor, Fairchild Semiconductor,Pratt and Whitney, Idexx Laboratories and other. These industries were interested inhaving a local institution which would not only provide educational opportunities fortheir employees but also would be a source of new engineers
. Maynard, and E.D. Kuempel, Airborne Nanostructured Particles and Occupational Health, Journal of Nanoparticle Research 7(6) (2005) 587-614. 3. V. Uskokovi5, Nanotechnologies: What we do not know, Technology in Society 29(1) (2007) 43-61. 4. D.G. Rickerby and M. Morrison, Nanotechnology and the environment: A European perspective, Science and Technology of Advanced Materials (In Press), November 2006. 5. A.D. Maynard and David Y. H. Pui, Nanotechnology and occupational health: New technologies – new challenges, Journal of Nanoparticle Research 9 (2007) 1-3. 6. S. Panero, B. Scrosati, M. Wachtler and F. Croce, Nanotechnology for the progress of lithium batteries R&D, Journal of Power Sources 129 (2004) 90-95
Arlington, use senior projects to satisfytheir application domain requirement, with no additional courses specifically required. Auburnlists “wireless, artificial intelligence, database systems, compiler front-ends, and softwareengineering tools” among their project domain areas.3.1.2 Impact on Graduates All of the survey respondents agree that their application domain area(s) helps prepare thestudents for the workplace (one reports that it helps their graduates meet program outcomes).Another school reported higher salaries in its application domain area, and another reports anumber of graduates having gained employment in their domain area. Still, to date there is
based interactive assessment and training program. The Engineering Design Graphics Journal, 64(1), 4-9. 5. Study, N. E. (2004). Assessing Visualization Abilities in Minority Engineering Students. Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition. 6. Miller, C. L. (1996). A historical review of applied and theoretical spatial visualization publications in engineering graphics. The Engineering Design Graphics Journal, 60(4), 12-33. Page 11.944.6 7. Sorby, S. A. (1999). Developing 3-D spatial visualization skills. The Engineering Design
Further modify the object oriented programs and add behaviors as defined in an object oriented approach to the Cone classFor example, in the second week of the semester the following problem was assigned ashomework and was to be completed by hand. A pump is pumping water into a conical tank at a constant rate of 1.15 gal/min. The tank dimensions are: top inner circumference = 2.87 ft, bottom inner circumference = 2.60 ft, and inner tank length along the slanting surface = 1.47 ft. If the tank was initially empty, how long (in s) will it take to fill 80% (by volume) of the tank? Page 11.943.3The
Test Bed Figure 1: FlexARM1 Design Flow Different test vector sequences simulate certain CPU operations. For instance, the fileForward.hex runs a series of FlexARM1’s single clock cycle data-processing instructions to testthe forwarding of the 5-stage pipeline and verify there are no data hazards found in theinstruction stream. The software development also includes the writing of test (application)programs for the synthesizable FlexARM1 core. These application programs ensure overallfunctionality and provide a demonstration of the FlexARM1 operating in hardware. We arepresently developing several application programs (which we hope to finalize and demonstrate at
1: Coding SchemeWhat professorate is teaching the course?Towards what engineering discipline is the class intendedWho is the targeted audience?Is the course required for these students?What is the duration of the course?What is the stated learning goal(s)?If there is a stated learning goal, was it met?What type of content is included in the course?What sorts of pedagogy are employed?How does the instructor assess student learning?What research strategies are used to measure transferability?What ethical theory(ies) must students consider? Deductive coding was used when I brought pre-conceived notions of items to be includedin categories. For example, I used Haws (2001) findings for pedagogical nomenclature, includingthe following
program.11 Differences in the observedoutcome variables, GPA and persistence are calculated from the treated and matchedparticipants, with the average differences being the effect of co-op participation.AcknowledgementsThe authors thank the National Science Foundation Research in Engineering Education Program(Award Number:1329283) for support of this research. Page 24.129.5References Cited1. Haddara, M., & Skanes, H. (2007). A reflection on cooperative education : from experience to experiential learning. Asia-Pacific Journal of Cooperative Education, 8(1), 67–76.2. Edgar, S., Francis-Coad, J., & Connaughton, J. (2013). Undergraduate