.). These attributes are akin to competencies. Therefore, all futureengineers must develop solutions to complex engineering problems (A04 - design) whileconsidering differentiated social impacts based on gender, gender identity, and other identityfactors during the design of an engineering product or process (A09 - engineering's impact).The following example demonstrates the application of GBA+ in a capstone student project. Thisproject focuses on the design of a robotic arm intended for quadriplegic individuals. In thisexample, GBA+ allows for the consideration of various identity factors to design a robotic armadapted to the diverse realities of quadriplegic individuals. First and foremost, the factor ofdisability is central to the development of
anexample, one of the first assignments in our first engineering class - EGR 111 (Introduction toEngineering Thinking and Practice) - was a personal statement of what each student hoped to dowith an engineering degree and where they envisioned they would be after graduation. This wasnot an easy assignment but one that we would give back to students on graduation day (nearly 4years later). Similar visioning assignments like an Independent Development Plan (IDP) wouldbe part of the curriculum too and would continue to be improved by the founding faculty team(e.g. Melissa Kenny, Kyle Luthy, Kyana Young, Courtney DiVittorio). Ethical Leadershipassignments and Career Readiness assignments in capstone design, etc. Figure 3: Some of the
been active withinternational student projects for several years through the mechanical engineering seniordesign program. Working directly in Senegal, Peru, and Malawi, and indirectly in Rwanda,Dr. Kochersberger has initiated 21 international capstone projects and advised 15 of these ina six-year period, with work focused on agriculture, healthcare, water, and sanitation. Theseprojects have given technicians in Malawi a new latrine pit desludging technology(replicated in Niger), NGOs in Peru a portable exam table for cancer screening, and farmersin Senegal a simple grass chopping system for making silage for livestock.Over a six-year period, more than 130 Virginia Tech students have been exposed to theseinternational projects where design work
Engineering and Computer Science at Ohio Northern University, where he currently teaches first-year programming and user interface design courses, and serves on the college’s Capstone Design Committee. Much of his research involves design education pedagogy, including for- mative assessment of client-student interactions, modeling sources of engineering design constraints, and applying the entrepreneurial mindset to first-year programming projects through student engagement in educational software development. Estell earned his BS in Computer Science and Engineering degree from The University of Toledo and both his MS and PhD degrees in computer science from the University of Illinois at Urbana-Champaign.Dr. Stephany
. Nguyen is a Senior Lecturer at the University of Maryland, College Park. He is a founding member of the Environmental and Socially Responsible Engineering (ESRE) group who work to integrate and track conscientious engineering aspects throughout the undergraduate educational experience across the college. His efforts include formally integrating sustainability design requirements into the mechanical engineering capstone projects, introducing non-profit partnerships related to designs for persons with disabilities, and founding the Social/Environmental Design Impact Award. He manages several outreach and diversity efforts including the large-scale Get Out And Learn (GOAL) engineering kit program that reaches thousands
artificial intelligence titled ”Generative Artificial Intelligence: A Double- Edged Sword,” which was given at the World Engineering Education Forum & Global Engineering Dean’s Council in October 2023. His work demonstrates his keen interest in cutting-edge technology, engineering solutions, and a passion for DEI topics. In addition to his academic pursuits, Kevin has gained valuable experience through various internships and work roles. He served as a Mechanical Engineering Intern at Jacobs, where he contributed to HVAC and MEP design projects, created energy models using HAP, and performed essential calculations for mechanical equipment selection. His involvement in report writing summarizing ultrasonic pipe testing
how others haveapproached empathy in curricula, projects, and practice. We applied Zaki’s model of empathy —which triangulates “sharing,” “thinking about” and “caring about,” as the theoretical frameworkguiding the inquiry — and performed a systematic literature review. We sought answers to thefollowing research questions: 1) How have educators integrated empathy development intolearning activities in STEM?; 2) What pedagogical approaches have been shown to promoteempathy of students in STEM?; and 3) How have scholars approached the development ofdifferent kinds of empathy in classrooms? After querying Google Scholar, analyzing more than10,000 publications, and applying the inclusion/exclusion criteria, we identified 63 articles thatcentered
technocentric process in favor of emphasizing itsinherently sociotechnical nature [38]. Forbes et al. [38] have put the ExSJ into practice at theirhome institution, University of San Diego, leveraging eight mechanisms that “support theco-created solving of sociotechnical problems, including community forums, community awards,scholar schemes, professional development events, a pro bono professional network, courses,capstone design projects, and research sponsoring undergraduate engineering” [p. 4]. Inparticular, they highlight their elective course, Community-Based Participatory EngineeringApprenticeship. This course provides space for students and local communities groups tocollaborate with one another “to share knowledge and understanding and to co
degrees with just one additional year, whereas a traditional MSE degreetakes usually two or more years to complete after the BSE. The combined degree program allowsacademically talented (high GPA) undergraduate students replace two of their three requiredundergraduate electives with graduate courses while also replacing their industry sponsoredsenior design project (capstone) with their Master’s thesis/project. With this, they are able toreplace up to 11 undergraduate credits with graduate credits thereby accelerating their graduatedegree while also reducing cost. The compressed timeline allows the scholars enter theworkforce a year earlier thereby maximizing their earning potential. This structure helps addressthe family pressure
eventually led her to a position in IT for a semiconductor IP start-up. Fast forward through coast-to-coast moves to Boston, San Diego and finally Rochester, Kathy spent many years in the fitness industry while raising her daughter, wearing every hat from personal trainer and cycling instructor to owner and director of Cycledelic Indoor Cycling Studio. Kathy draws upon these many diverse career and life experiences while directing WE@RIT. In the spring of 2020, Kathy earned her Master of Science degree in Program Design, Analysis & Manage- ment through RIT’s School of Individualized Study, combining concentrations in Project Management, Analytics and Research, & Group Leadership and Development. An unabashed
engineering courses, inquiry-based learning in mechanics, and design projects to help promote adapted physical activities. Other professional interests include aviation physiology and biomechanics.Dr. Benjamin David Lutz, California Polytechnic State University, San Luis Obispo Ben D. Lutz is an Assistant Professor of Mechanical Engineering Design at Cal Poly San Luis Obispo. He is the leader of the Critical Research in Engineering and Technology Education (CREATE) group at Cal Poly. His research interests include critical pedagogies; efforts for diversity, equity, and inclusion in engineering, engineering design theory and practice; conceptual change and understanding; and school- to-work transitions for new engineers
, an outcome spaceemerged with five main categories of description about the kinds of obstacles studentsencountered in regard to the hiring process in computing and industry practices: Uncertainty,interview techniques, time demands of preparation, anxiety management, and improvinginclusivity. Yet, our goal was not to focus on the issues faced, but the solutions to resolve them.As such, the perceptions of the students’ experiences guided the creation of a set ofrecommendations for students, academia, and industry, to mitigate concerns with the currentprocess and to consider avenues for improvement.1 IntroductionOver the next decade, computer and information technology occupations are projected to rise11% [1]. However, disparities in the