Asee peer logo

Aligning Student Learning, Faculty Development And Engineering Content: A Framework For Strategic Planning Of Engineering Instruction And Assessment

Download Paper |

Conference

2008 Annual Conference & Exposition

Location

Pittsburgh, Pennsylvania

Publication Date

June 22, 2008

Start Date

June 22, 2008

End Date

June 25, 2008

ISSN

2153-5965

Conference Session

Institutional and Curricular Reform

Tagged Division

Educational Research and Methods

Page Count

11

Page Numbers

13.166.1 - 13.166.11

DOI

10.18260/1-2--4101

Permanent URL

https://peer.asee.org/4101

Download Count

498

Paper Authors

biography

Arunkumar Pennathur University of Texas-El Paso

visit author page

Arunkumar Pennthur is Associate Professor of Industrial Engineering at UTEP. He teaches work design, senior design and human factors engineering. His research interests are in virtual collaboration and problem representation in engineering education.

visit author page

biography

Louis Everett University of Texas-El Paso

visit author page

Louis Everett is Professor and Chair of Mechanical Engineering at University of Texas at El Paso. He teaches Dynamics and Controls. His research interests are in metacognition in engineering education.

visit author page

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Aligning Student Learning, Faculty Development and Engineering Content: A Framework for Strategic Planning of Engineering Instruction and Assessment

Abstract

This paper outlines an innovative framework for modeling and planning engineering education assessment interventions. The theoretical bases for the framework are primarily derived and integrated from research methods and findings in several different disciplines - human engineering, engineering education, human communication sciences and, mathematical modeling using statistical and neural network approaches. The framework consists of four key elements – the task of instruction, the players including students, faculty, and other stake-holders such as employers, the tools used in the learning enterprise including traditional and modern technology tools, and the environment for learning. Using the framework presented, variables associated with the task, the players, the tools, and the environment can be visualized and analyzed in 3-dimensional space using multidimensional scaling and neural network methods. One aspect of the framework, reflections from an engineering faculty member, is analyzed to demonstrate how strategic planning can be facilitated through assessment and analysis with the framework.

1. Model for strategic assessment planning

Adapted from the Task, Operator, Machine, Environment (TOME) framework from the human factors engineering discipline1, the main elements of the proposed model for assessment of engineering education (figure 1) are:

(1) the task of instruction: The purpose of the proposed model is to design the task of instruction for achieving the desired outcome of learning and development. All other model elements are intended to study and design the task of instruction. Therefore, the task element is a superset of all other model elements and is not represented in figure 1. At a more detailed level of modeling and analysis, task-related variables such as task sequencing (precedence- relationships among instructional tasks for example), task frequency (how often should an instructor use a certain tool for instruction), task duration (how long should an instructor teach a certain piece of instruction), task criticality (how critical is one task for success of the entire instructional piece), task discretion (e.g., what amount of discretion does the instructor have in using a certain instructional technique), and task content (what is the content of instruction), are some of the key task-related factors that need consideration. Of particular importance is task content, because the goal of formally designing the instructional task is to narrow the distance between the learners and the task content. Hence, content is explicitly included in our model. We consider all other task-related variables as part of a large strategy pool to optimize the distances between the content and the learners.

(2) the players in the task: The main players with significant roles in the proposed model are the students, the faculty, and employers of students. Because student learning is primarily modeled, students are stakeholders; because faculty deliver instruction and facilitate student learning, they play a role in the model; and engineering employers influence the model by

Pennathur, A., & Everett, L. (2008, June), Aligning Student Learning, Faculty Development And Engineering Content: A Framework For Strategic Planning Of Engineering Instruction And Assessment Paper presented at 2008 Annual Conference & Exposition, Pittsburgh, Pennsylvania. 10.18260/1-2--4101

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2008 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015