Asee peer logo

An Integrated Approach To The Design Of Experiments

Download Paper |

Conference

2005 Annual Conference

Location

Portland, Oregon

Publication Date

June 12, 2005

Start Date

June 12, 2005

End Date

June 15, 2005

ISSN

2153-5965

Conference Session

ECE Lab Development and Innovations

Page Count

21

Page Numbers

10.183.1 - 10.183.21

Permanent URL

https://peer.asee.org/15288

Download Count

15

Request a correction

Paper Authors

author page

David Mauritzen

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Excerpt from Lab Zero - Introduction INTRODUCTION This m anual is an attem pt to integrate analys is , com puter sim ulation and experim entation. In order that you get the benefits from this approach it will be neces sary for you to do the pre-lab work (analys is and simulation) before the experim ental phas e is perform ed. Although this will "cos t" you tim e before the lab, it will s ave you tim e after the experim ent is perform ed becaus e you will know what to do and what to expect (thus minim izing confus ion and tim e consum ing rework).

Enough background m aterial is included in the early experim ents so that they are (hopefully) independent of the cours e m aterial and s equence. The background inform ation also includes an as sociation with concepts from Mechanical Engineering and Phys ics so that m echanical engineering m ajors can develop an understanding of electrical circuits by analogy and electrical engineering m ajors can develop a better unders tanding of mechanical s ys tem s .

L AB O R AT O R Y Z E R O

C O M P U T E R U S E I S M AN D AT O R Y I N T H I S L A B . T H E S O O N E R Y O U L E A R N T O U S E I T , T H E M O R E Q U I C K L Y Y O U W I L L B E A B L E T O D O H O M E W O R K A N D L A B R E P O R T S --- I T S A V E S Y O U T I M E , M I N I M IZ E S A R ITH M E TIC E R R O R S , A N D M A K E S Y O U R R E P O R TS MO R E L E G I B L E . D O TH E MA TH C A D TU TO R IA L A N D / O R T A L K T O Y O U R F R I E N D S W H O H A V E H A D E XP E R I E N C E W I T H M A T H C A D . U S E E W B , C I R C U I T M AK E R , P S P I C E O R S O M E E Q U I V AL E N T S P I C E P R O G R AM T O S I M U L AT E T H E C I R C U I T S AN D V E R I F Y T H E P E R F O R M AN C E Y O U E X P E C T .

U S E N O M I N AL V AL U E S F O R Y O U R P R E L I M I N AR Y C AL C U L AT I O N S ; U S E AC T U AL M E AS U R E D V AL U E S T O I M P R O V E AG R E E M E N T B E T W E E N T H E O R E TI C AL AN D M E AS U R E D P E R F O R M AN C E .

E X AM P L E . S u p p o s e y o u w a n t t o c a l c u l a t e t h e t h e c u r r e n t t h r o u g h R 1 a n d t h e v o l t a g e a c r o s s R 2 in F I G U R E S M I1

R1 - + 00 .00 0 A 2 .2 ko hm

1 2V R2 VB + 5 .1 ko hm 00 .00 0 V -

FI G UR E S M I1 A S IM P L E C IR C UIT ( NO M IN A L V A L U E S )

A n a l y s i s s h o w s t h a t t h e c u r r e n t t h ro u g h R 1 a n d t h e v o lt a g e a c r o s s R 2 w i ll b e

VB R2 I R 1( R 1 , R 2 ) : = V R 2( R 1 , R 2 ) : = ⋅VB R1 + R2 R1 + R2

V B w a s n o t in c l u d e d a s a n a r g u m e n t o f t h e s e f u n c t i o n s t h a t w e h a v e d e f i n e d b e c a u s e w e h a v e a s s u m e d t h a t i t w il l b e s e t t o 1 2 V o l t s a s i n d i c a t e d in t h e d i a g r a m . ( I f w e w a n t e d t o m a k e t h e c a l c u la t i o n s f o r d i f f e re n t v a lu e s o f V B w e w o u l d h a v e in c l u d e d i t in t h e a r g u m e n t li s t . )

N e x t w e d e f in e t h e n o m in a l v a lu e s f o r R 1 a n d R 2 :

R 1 N : = 2 .2 kΩ R 2 N : = 5 .1 kΩ N O T I C E T H AT W E H AV E AD D E D AN "N " T O I N D I C AT E N O M I N AL V AL U E S N O T I C E T H AT W E H AV E AD D E D E X P L AN AT I O N S O F N O T AT I O N ! I R 1 N : = IR 1 ( R 1 N , R 2 N ) N O T I C E T H AT T H I S D O E S N 'T W O R K . W H Y? ( B E C AU S E W E D I D N 'T D E F I N E V B . )

VB := 1 2 V N O T E T H AT W E I N C L U D E D U N I T S VB R2 I R 1( R 1 , R 2 ) : = V R 2( R 1 , R 2 ) : = ⋅VB R1 + R2 R1 + R2

S T AR T C L O N E ( C I T E D L AT E R )

I R 1 N : = I R 1( R 1 N , R 2 N ) V R 2 N : = V R 2( R 1 N , R 2 N )

I R 1 N = 1 .6 4 4 mA V R 2 N = 8 .3 8 4 V EN D C LO N E

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright c 2005, American Society for Engineering Education

Mauritzen, D. (2005, June), An Integrated Approach To The Design Of Experiments Paper presented at 2005 Annual Conference, Portland, Oregon. https://peer.asee.org/15288

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2005 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015