Montreal, Canada
June 16, 2002
June 16, 2002
June 19, 2002
2153-5965
6
7.192.1 - 7.192.6
10.18260/1-2--10797
https://peer.asee.org/10797
1059
Main Menu Session 3225
An Introductory Multi-disciplinary, Design Course in MEMS
Jeff Frolik, Joe Biernacki, Glenn Cunningham and Satish Mahajan
Tennessee Technological University
Introduction
Microelectromechanical systems (MEMS) will likely be one of the 21st century's engineering design achievements. Integration of sensors and actuators with associated electronics on a single platform has added a new dimension to the design of engineering solutions. MEMS devices have already made significant commercial impact in such diverse applications as airbag deployment sensors, inkjet printer cartridges, vaccine delivery systems, digital light projectors and optical switches. With an ever increasing number of applications in automotive, aerospace, medical and other industries, projections have the MEMS market growing to $12 billion in 2002 1 and experts envision that MEMS will soon be as ubiquitous as microcircuits. As such, educating undergraduate as well as graduate students in this important developing area is no longer an interesting experiment in education but a necessary fact.
In this paper, the results of an introductory multi-disciplinary, project-oriented course in MEMS are presented. The course is team-taught at Tennessee Technological University (TTU) by faculty from chemical (CHE), electrical (ECE) and mechanical (ME) engineering to a mix of undergraduate and graduate students from these three disciplines. The authors will discuss the format for this course including content, structure and student projects. These results, including lessons learned, are from two offerings of the course, Spring 2000 and Spring 2001. MEMS by nature are interdisciplinary systems and thus this topic is not only appropriate for accomplishing ABET goals of providing interdisciplinary team experience, but also the course material exposes undergraduates to a field of study not typically offered in most undergraduate engineering curricula.
Course Content and Structure
Tennessee Technological University is predominately an undergraduate institution, thus the authors have geared this introductory MEMS course at the senior/first-year graduate level. Other universities offer undergraduate MEMS courses but often they are off shoots of on-campus semiconductor activities and thus focus on device fabrication2, 3. In addition, these courses tend to be departmentalized. TTU, however, does not have a fabrication facility nor does it have a faculty member with MEMS-specific expertise and thus a different approach has been taken. Building upon the various strengths of faculty throughout the College of Engineering, this cross- listed course emphasizes system level issues associated with developing MEMS devices as opposed to providing students with hands-on fabrication experience. The course addresses
Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition Copyright © 2002, American Society for Engineering Education
Main Menu
Mahajan, S., & Biernacki, J., & Cunningham, G., & Frolik, J. (2002, June), An Introductory Multidisciplinary Design Course In Mems Paper presented at 2002 Annual Conference, Montreal, Canada. 10.18260/1-2--10797
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2002 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015