New Orleans, Louisiana
June 26, 2016
June 26, 2016
June 29, 2016
978-0-692-68565-5
2153-5965
Mechanics
16
10.18260/p.26242
https://peer.asee.org/26242
647
Nick Stites is pursuing a PhD in Engineering Education at Purdue University. His research interests include the development of novel pedagogical methods to teach core engineering courses and leveraging technology to enhance learning experiences. Nick holds a BS and MS in Mechanical Engineering and has eight years of engineering experience. He also has four years of experience as an adjunct instructor at the community-college and research-university level.
David Evenhouse is a Graduate Student and Research Assistant in the Purdue School of Engineering Education. He graduated from Calvin College in the Spring of 2015 with a B.S.E. concentrating in Mechanical Engineering. Experiences during his undergraduate years included a semester in Spain, taking classes at the Universidad de Oviedo and the Escuela Politécnica de Ingenieria de Gijón, as well as multiple internships in Manufacturing and Quality Engineering. His current work primarily investigates the effects of select emergent pedagogies upon student and instructor performance and experience at the collegiate level. Other interests include engineering ethics, engineering philosophy, and the intersecting concerns of engineering industry and higher academia.
Mariana Tafur is an assistant professor at University of Los Andes in Bogotá - Colombia. She has a Ph.D. in Engineering Education at Purdue University, West Lafayette-IN; a M.S., in Education at Los Andes University, Bogotá-Colombia; and a B.S., in Electronics Engineering at Los Andes University, Bogotá-Colombia. She is a 2010 Fulbright Fellow.
Her research interests include engineering skills development, STEM for non-engineers adults, motivation in STEM to close the technology literacy gap, STEM formative assessment, and Mixed-Methods design.
Charles M. Krousgrill is a Professor in the School of Mechanical Engineering at Purdue University and is affiliated with the Ray W. Herrick Laboratories at the same institution. He received his B.S.M.E. from Purdue University and received his M.S. and Ph.D. degrees in Applied Mechanics from Caltech. Dr. Krousgrill’s current research interests include the vibration, nonlinear dynamics, friction-induced oscillations, gear rattle vibrations, dynamics of clutch and brake systems and damage detection in rotor systems. Dr. Krousgrill is a member of the American Society for Engineering Education (ASEE). He has received the H.L. Solberg Teaching Award (Purdue ME) seven times, A.A. Potter Teaching Award (Purdue Engineering) three times, the Charles B. Murphy Teaching Award (Purdue University), Purdue’s Help Students Learn Award, the Special Boilermaker Award (given here for contributions to undergraduate education) and is the 2011 recipient of the ASEE Mechanics Division’s Archie Higdon Distinguished Educator Award.
Craig is a Assessment & Data Analyst in the Office of Institutional Research, Assessment, and Effectiveness at Purdue University.
Angelika Zissimopoulos holds a Ph.D. in Biomedical Engineering From Northwestern University. She is currently the Associate Director for STEM education at the University of Chicago.
David B. Nelson is Associate Director of the Center for Instructional Excellence at Purdue University. He received his Ph.D in World History from the University of California, Irvine in 2008.
David has been involved in many educational research projects at Purdue, including published worked in the programming education, student engagement and academic performance in dynamics engineering courses, and educational modalities in engineering, technology and economics.
Jennifer DeBoer is currently Assistant Professor of Engineering Education at Purdue University. Her research focuses on international education systems, individual and social development, technology use and STEM learning, and educational environments for diverse learners.
Jeffrey F. (Jeff) Rhoads is an Associate Professor in the School of Mechanical Engineering at Purdue University and is affiliated with both the Birck Nanotechnology Center and Ray W. Herrick Laboratories at the same institution. He received his B.S., M.S., and Ph.D. degrees, each in mechanical engineering, from Michigan State University in 2002, 2004, and 2007, respectively. Dr. Rhoads’ current research interests include the predictive design, analysis, and implementation of resonant micro/nanoelectromechanical systems (MEMS/NEMS) for use in chemical and biological sensing, electromechanical signal processing, and computing; the dynamics of parametrically-excited systems and coupled oscillators; the behavior of electromechanical and thermomechanical systems, including energetic materials, operating in rich, multi-physics environments; and mechanics education. Dr. Rhoads is a member of the American Society for Engineering Education (ASEE) and the American Society of Mechanical Engineers (ASME), where he serves on the Design, Materials and Manufacturing Segment Leadership Team and the Design Engineering Division’s Technical Committees on Micro/Nanosystems and Vibration and Sound. Dr. Rhoads is a recipient of the National Science Foundation’s Faculty Early Career Development (CAREER) Award, the Purdue University School of Mechanical Engineering’s Harry L. Solberg Best Teacher Award (twice), and the ASEE Mechanics Division’s Ferdinand P. Beer and E. Russell Johnston, Jr. Outstanding New Mechanics Educator Award. In 2014, Dr. Rhoads was selected as the inaugural recipient of the ASME C. D. Mote Jr., Early Career Award and was featured in ASEE Prism Magazine’s 20 Under 40.
Edward Berger is an Associate Professor of Engineering Education and Mechanical Engineering at Purdue University, joining Purdue in August 2014. He has been teaching mechanics for nearly 20 years, and has worked extensively on the integration and assessment of specific technology interventions in mechanics classes. He was one of the co-leaders in 2013-2014 of the ASEE Virtual Community of Practice (VCP) for mechanics educators across the country.
The Dynamics Concept Inventory (DCI) is a validated assessment tool commonly used to evaluate student growth within core, gateway-level mechanics courses. This research explored the evaluative use of this tool within the context of Freeform – an emergent course system that buttresses active class meetings with blended and collaborative virtual learning environments, themselves founded upon extensive multimedia content and interactive forums – at Purdue University. The paper specifically considers a number of related issues including: (i) the thoughtful development (via expert content validation) and statistical reliability of an abbreviated DCI instrument, which is more amenable to in-class implementation than the much longer full DCI; (ii) the correlation of abbreviated-DCI performance with exam scores and final course grades for a dynamics course using the Freeform framework with an emphasis on both conceptual understanding and traditional problem-solving skills; and (iii) various inter-section performance metrics in a preliminary study on how an implementation of the abbreviated-DCI may help elucidate the impact of the instructor within the Freeform framework. The results of these analyses supported the validity and reliability of the abbreviated DCI tool, and demonstrated its usefulness in a formal research setting. The preliminary study suggested that the Freeform framework might normalize differences in instructor pedagogical choices and student performance across class sections. These findings indicate that the abbreviated DCI holds promise as a research instrument and lay the groundwork for future inquiry into the impact of the Freeform instructional framework on students and instructors alike.
Stites, N., & Evenhouse, D. A., & Tafur-Arciniegas, M., & Krousgrill, C. M., & Zywicki, C., & Zissimopoulos, A. N., & Nelson, D. B., & Deboer, J., & Rhoads, J. F., & Berger, E. J. (2016, June), Analyzing an Abbreviated Dynamics Concept Inventory and Its Role as an Instrument for Assessing Emergent Learning Pedagogies Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26242
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015