Asee peer logo

Biomedical Engineering Students Gain Design Knowledge and Report Increased Confidence When Continually Challenged with Integrated Design Projects

Download Paper |


2020 ASEE Virtual Annual Conference Content Access


Virtual On line

Publication Date

June 22, 2020

Start Date

June 22, 2020

End Date

June 26, 2021

Conference Session

Biomedical Engineering Curriculum and Design - June 24th

Tagged Division

Biomedical Engineering

Page Count




Permanent URL

Download Count


Request a correction

Paper Authors


Steven Higbee Indiana University Purdue University, Indianapolis Orcid 16x16

visit author page

Steve is a Clinical Assistant Professor of Biomedical Engineering at Indiana University-Purdue University Indianapolis. He received his PhD in Bioengineering from Rice University (Houston, TX) in 2013, after earning his BS and MS degrees from Purdue University (West Lafayette, IN). His current position focuses on teaching, advising, and promotion of undergraduate research.

visit author page


Sharon Miller Indiana University Purdue University, Indianapolis

visit author page

Dr. Miller is the Undergraduate Program Director and Clinical Associate Professor of Biomedical Engineering at Indiana University-Purdue University Indianapolis (IUPUI). After earning her BS in Materials Science and Engineering from Purdue University (West Lafayette), she earned her MS and PhD degrees at the University of Michigan (Ann Arbor). Her current roles include teaching, assisting in program assessment, student advising, and helping oversee undergraduate curriculum development and enhancement.

visit author page

Download Paper |


Introduction: The undergraduate biomedical engineering (BME) curriculum should prepare students to confidently approach complex problems, as graduates will enter the workforce in an environment of rising healthcare costs, decreasing average life expectancy, and significant socioeconomic disparities in health outcomes. With this landscape, solutions to contemporary problems will require innovative thinking and groundbreaking medical technologies, suggesting that the future of BME will be increasingly design-oriented. Undergraduate BME curricula generally include laboratory and project components aimed at preparing students for senior capstone; however, students may begin capstone without the knowledge, skills, and confidence required for engineering design success. With these shortcomings in mind, we vertically integrated design experiences in our undergraduate BME curriculum and evaluated student design performance throughout.

Methods: Four engineering design project assignments were developed and integrated into sophomore- and junior-level BME laboratory courses, establishing a continuous design thread spanning the four years of the undergraduate BME curriculum. Through the sequence of projects, student teams worked to design (1) fracture fixation devices, (2) electromyogram-controlled motor assemblies, (3) compact spectrophotometers, and (4) programmable drug dosing devices. We developed a common instructional Design Module, organized around an adapted version of the FDA waterfall diagram, and used it in each course to build student understanding of the BME design process. By emphasizing different portions of the waterfall diagram in each course and varying student deliverables, we implemented a stepwise approach to building student design confidence. The set of design projects also intentionally target a multitude of skills relevant to design, including computer-aided design (CAD), computational modeling, iteration, prototyping, programming (LabVIEW and Python), hardware-software integration, and technical communication.

A mixed methods approach was employed to assess student knowledge, confidence, and achievement in design. A pre-/post-quiz (8 questions worth 10 points total) was used to assess student knowledge of design concepts and their application toward medical device design. Students self-reported their design confidence levels prior to the first design project and after each design project, and focus groups were held after design projects to assess student design confidence going forward. Students also rated how worthwhile and enjoyable they found each project using a reflection grid and reflected on the integration of prior coursework into their design projects. Finally, student design reports were scored by instructors using a rubric influenced by AAC&U VALUE Rubrics and the Informed Design Teaching and Learning Matrix. Students also self-reported design mastery via survey, and these responses were correlated to scores from the instructor rubric.

Results: Students engaged in 200-level and 300-level projects demonstrated knowledge gains of the BME design process after one project (p < 0.0001) and further knowledge gains after a second project (not statistically significant). In particular, students gained knowledge related to the waterfall diagram, design requirements and constraints, and verification and validation (p < 0.005 for each). In their reflections, students demonstrate cognizance of prior coursework knowledge that they have integrated into their designs, adding to the sought-after sense of curricular connectedness. After the completion of each project, students self-reported significant confidence gains in four major areas (p < 0.05 for each): (1) design process and approach, (2) working with hardware, (3) working with software and interfacing with hardware, and (4) communicating results. Focus group responses support the observed quantitative improvements in student design confidence. Finally, instructor scoring of student design reports indicates that design achievement and ability to communicate design improve as students progress through the curriculum; however, student self-assessment of design mastery does not correlate strongly with instructor scores.

Discussion: Active learning in undergraduate classrooms has been shown to improve performance, motivation, and communication skills among engineering students. By implementing and assessing hands-on engineering design project assignments at the sophomore and junior levels, we have improved student design knowledge, confidence, and achievement prior to capstone design. Future work will address limitations of student self-reporting of confidence levels and will investigate changes in the quality of capstone projects that could result from better prepared students.

Higbee, S., & Miller, S. (2020, June), Biomedical Engineering Students Gain Design Knowledge and Report Increased Confidence When Continually Challenged with Integrated Design Projects Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . 10.18260/1-2--34217

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2020 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015