Asee peer logo

Board 106: Enhancing Critical Life-Cycle Decision Making in Complex Engineering Projects in the Context of Engineering Economy Courses

Download Paper |

Conference

2018 ASEE Annual Conference & Exposition

Location

Salt Lake City, Utah

Publication Date

June 23, 2018

Start Date

June 23, 2018

End Date

July 27, 2018

Conference Session

NSF Grantees Poster Session

Tagged Topic

NSF Grantees Poster Session

Page Count

7

DOI

10.18260/1-2--29868

Permanent URL

https://216.185.13.131/29868

Download Count

522

Request a correction

Paper Authors

biography

K. Jo Min Iowa State University

visit author page

K. Jo Min is Associate Professor and Associate Chair, Director of Undergraduate Education in Industrial and Manufacturing Systems Engineering Department at Iowa State University. He teaches courses on production systems, closed-loop supply chains, and engineering valuation. His education research interests include outcome assessment and visualization aids, and his engineering research focuses on application of stochastic optimal control on engineering decision making. He has co-authored numerous papers in The Engineering Economist, IEEE Transactions on Engineering Management, International Journal of Production Research, International Journal of Engineering Education, and other peer-reviewed journals. He has been serving as an ABET program evaluator for EAC and ETAC and as a reviewer for various NSF engineering education panels.

visit author page

biography

John Jackman Iowa State University

visit author page

John Jackman is an associate professor of industrial and manufacturing systems engineering at Iowa State University. His research interests include engineering problem solving, computer simulation, web-based immersive learning environments, and data acquisition and control.

visit author page

author page

Farshad Niayeshpour Iowa State University

Download Paper |

Abstract

Complex engineering projects (CEPs) such as electric transmission networks and transportation infrastructure are becoming increasingly important to the public in general and engineers in particular. These projects are large-scale in terms of money and time, and contain significant uncertainties over their life-cycle ranging from output prices to input costs. Due to these uncertainties, there are conditional opportunities (e.g., on prices) to make critical decisions such as construction or decommission. Such decisions constitute strategic flexibilities or "real options" because the decision maker can alter the course of an investment over time when an uncertain aspect of the project such as the price becomes known. The current practice in engineering curricula, however, does not address the declarative and procedural knowledge necessary for critical economic decision making. We propose to (1) develop a module in an introductory course emphasizing the concept of the aforementioned strategic flexibilities and (2) develop an advanced course that is mathematically rigorous, yet with in-depth case studies for the CEPs. The module addresses the valuation of the strategic flexibilities over the life of CEPs to provide managerial insights and economic intuition. The advanced course emphasizes the project experience including data-based parameter estimation and computation for optimal decisions. Both the module and course teaching materials will be complemented by a set of visualization aids for the key concepts and applications. This project transforms the traditional teaching of engineering economy in the following ways. By using a stochastic optimal control perspective, students will be introduced to the optimal threshold values for taking an action (e.g., the electricity price at which a generator may exit the market) as well as the optimal timing for such actions. These concepts of threshold AND timing will have analytic forms without the pre-imposed granularity found in decision trees. Students will also learn to deal with confounding factors (e.g., Kirchhoff’s law on electric transmission) and how best to synthesize them with the concepts, enhancing their insights and intuition. To our knowledge, there is little systematic and rigorous treatment of such flexibility in current engineering economy courses. Hence, this endeavor is expected to expand the current knowledge on the teaching and learning of the strategic flexibilities in CEPs in such courses. This project aims to transform engineering economy education via a conceptual module in an introductory course and an experiential advanced course. Given that engineering economy courses are quite ubiquitous in colleges of engineering (taken by multiple engineering majors) across the U.S., if this project is successful, the potential impact of our findings on the teaching approach, teaching materials, and learning outcomes is truly substantial. Our methods of dissemination include journal papers and national conference presentations, and through these methods, we introduce our findings not only to traditional engineering economists, but also to teaching colleagues of project management in various disciplines such as construction engineering. If this project is successful, then ultimately students of engineering economy will become better decision makers in CEPs that are becoming increasingly important in technology-driven societies domestically and globally.

Min, K. J., & Jackman, J., & Niayeshpour, F. (2018, June), Board 106: Enhancing Critical Life-Cycle Decision Making in Complex Engineering Projects in the Context of Engineering Economy Courses Paper presented at 2018 ASEE Annual Conference & Exposition , Salt Lake City, Utah. 10.18260/1-2--29868

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2018 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015