Asee peer logo

Board # 23 : Integrating Computer Engineering Lab Using Spiral Model

Download Paper |

Conference

2017 ASEE Annual Conference & Exposition

Location

Columbus, Ohio

Publication Date

June 24, 2017

Start Date

June 24, 2017

End Date

June 28, 2017

Conference Session

NSF Grantees Poster Session

Tagged Topic

NSF Grantees Poster Session

Page Count

12

Permanent URL

https://peer.asee.org/27810

Download Count

53

Request a correction

Paper Authors

biography

Pong P. Chu Cleveland State University

visit author page

Dr. Chu is Associate Professor in the Department of Electrical Engineering and Computer Science. He has taught undergraduate and graduate digital systems and computer architecture courses for more than two decades, and he has received multiple instructional grants from the National Science Foundation and authored six textbooks in this area.

visit author page

biography

Chansu Yu Cleveland State University

visit author page

Chansu Yu received the B.S. and M.S. degrees in electrical engineering from Seoul National University, Korea, in 1982 and 1984, respectively, and the Ph.D. degree in computer engineering from the Pennsylvania State University in 1994. He is currently Chair and Professor of the Department of Electrical Engineering and Computer Science at the Cleveland State University in Cleveland, Ohio. Before joining the CSU, he was on the research staff at LG Electronics, Inc. He has authored/coauthored more than 120 technical papers and numerous book chapters in the areas of mobile computing, performance evaluation, and parallel systems. His research has been supported by both industry and government including National Science Foundation. Dr. Yu is a member of the IEEE, IEEE Computer Society, ACM, and ASEE.

visit author page

biography

Karla R Hamlen Cleveland State University

visit author page

Dr. Karla Hamlen is an Associate Professor of Educational Research in the Department of Curriculum and Foundations. She specializes in educational research relating to both formal and informal entertainment technology use among students.

visit author page

Download Paper |

Abstract

Becoming a good engineer requires two types of practices - the "component skill," which is the knowledge in specific areas, and the "integration skill," which applies and integrates the component skill to address complex and realistic problems. The Carnegie Foundation for the Advancement of Teaching conducted a five-year study of engineering education and reported the results in a book titled "Educating Engineer: Designing for the Future of the Field." It points out that one deficiency of the engineering curricula is that they mainly focus on the component skill, in which each subject is taught in isolation and without proper context, and do not adequately prepare students for the integration skill. The study recommends a "spiral model" to provide more effective learning experiences: "... the ideal learning trajectory is a spiral, with all components revisited at increasing levels of sophistication and interconnection. Learning in one area supports learning in another."

The grant work is motivated by the spiral model. We establish a lab framework that weaves through the entire computer engineering curriculum, from freshman engineering to senior capstone design. The framework connects and integrates the individual courses through three cohesive themes of lab experiments and projects. The themes are based on video, sound, and touch sensor. Each theme grows in two dimensions: component complexity and abstraction level. The component dimension represents the I/O devices and modules. Each theme involves an array of I/O components with increasing complexity. For example, the video theme starts with a tri-color LED (i.e., 1 pixel) and progresses to an 8-by-8 LED matrix (64 pixels), to a low-resolution TFT LCD module, and to a VGA display. The abstraction level follows the layered computer system model that includes gate, RTL (register transfer level), processor, OS, and application layers. The lab experiments and projects are constructed to illustrate and reinforce fundamental concepts in various courses. Their complexities and abstraction levels gradually grow with the progress of curriculum. These components are evolved into a set of IP (intellectual property) cores that can be incorporated into any FPGA-based computer system. The project are implemented in two institutions in parallel and its effectiveness is evaluated by an array of formative and summative assessment instrument to measure the outcomes in terms of student knowledge, student interest, student perception of curriculum, and instructor perception of curriculum.

The work has the following intellectual merits: (1). It addresses a serious deficiency - lack of integration skill - in engineering curriculum; (2). The work follows the guidelines for effective instructional practices; (3). Adoption is easy and flexible since the lab experiments and projects can be incorporated into any curriculum; (4). Only low-cost boards and parts are needed and they can be used repeatedly over the entire curriculum; (5). The completed work establishes an open and expandable framework for I/O subsystem development; (6). The project assesses the effectiveness of a recommended curriculum learning model.

The project overhauls the lab portion of the CE curriculum and replaces the isolated and scattered projects with a single cohesive theme-based framework. Because of the easy adoption path and low cost, the proposed lab work can be easily incorporated into any existing curriculum. A series of lecture note, tutorials, experiments, and projects are developed and made available to other institutions. The materials are also systematically introduced and incorporated into two “learning-by-doing” textbooks.

Chu, P. P., & Yu, C., & Hamlen, K. R. (2017, June), Board # 23 : Integrating Computer Engineering Lab Using Spiral Model Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. https://peer.asee.org/27810

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2017 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015