Salt Lake City, Utah
June 23, 2018
June 23, 2018
July 27, 2018
Electrical and Computer
Diversity
31
10.18260/1-2--30108
https://peer.asee.org/30108
1028
Steve Warren received a B.S. and M.S. in Electrical Engineering from Kansas State University in 1989 and 1991, respectively, followed by a Ph.D. in Electrical Engineering from The University of Texas at Austin in 1994. Dr. Warren is a Professor in the Department of Electrical & Computer Engineering at Kansas State University. Prior to joining KSU in August 1999, Dr. Warren was a Principal Member of the Technical Staff at Sandia National Laboratories in Albuquerque, NM. He directs the KSU Medical Component Design Laboratory, a facility partially funded by the National Science Foundation that provides resources for the research and development of distributed medical monitoring technologies and learning tools that support biomedical contexts. His research focuses on (1) plug-and-play, point-of-care medical monitoring systems that utilize interoperability standards, (2) wearable sensors and signal processing techniques for the determination of human and animal physiological status, and (3) educational tools and techniques that maximize learning and student interest. Dr. Warren is a member of the American Society for Engineering Education and the Institute of Electrical and Electronics Engineers.
Mr. Charles Carlson is a Graduate Teaching and Research Assistant in Electrical and Computer Engineering at Kansas State University, and he is currently pursuing his Ph.D. in Electrical Engineering. He works in the biomedical lab, and is a teaching assistant for ECE 241: Introduction to Computer Engineering. He is interested in engineering education, biotechnology, and bioinstrumentation.
Mr. Andrew McKittrick is a Student and Undergraduate Researcher in Electrical and Computer Engineering at Kansas State University. He is currently pursuing a Degree in Computer Engineering and works in the biomedical lab with an emphasis in software development for instrumentation systems. He is interested in software engineering, data acquisition systems, and engineering education.
Shangxian Wang is an undergraduate research assistant in the Kansas State University (KSU) Department of Electrical and Computer Engineering. She is pursuing her bachelor’s degree in Electrical Engineering and supports various efforts in the KSU Medical Component Design Laboratory. Shangxian is a student member of the IEEE Engineering in Medicine and Biology Society, and her interests include biomedical instrumentation, biomedical imaging, and K-12 STEM service projects.
The medical device industry is experiencing a move toward devices that communicate with cell phones, primarily driven by the desire for lower-cost medical monitoring tools that promote personalized medicine. A concurrent phenomenon is the emergence of makerspace resources that allow individuals, as hobbyists or engineers in training, to prototype technical gadgets with the aid of 3D printers and connectible components – components that would traditionally have been designed from the ground up by a trained engineer but can now be purchased with standardized interfaces and supporting software libraries. This paper describes the initial implementation of a wearable electrocardiograph project for a senior-level undergraduate biomedical instrumentation course sequence at Kansas State University. The project integrated circuit-level design concepts with makerspace tools consistent with the move toward personalized medicine. Each student in the course was tasked with designing a wearable electrocardiograph that communicates with a cell phone via a Bluetooth Low Energy (BLE) link. The student was responsible for the low-level analog circuit design (e.g., differential amplifiers, filters, and single-ended design for battery operation), the digital circuitry (e.g., analog-to-digital conversion), the board layout/population, and the 3D-printed case. Due to time constraints, teaching-assistant help was offered in terms of the BLE data transmission and the cell phone app. Portable data acquisition hardware (Digilent Analog Discovery 2 units) and virtual instrument software (WaveForms 2015 software) provided students with means to build and test circuitry outside of the confines of traditional benchtop laboratories. Student performance was assessed relative to learning objectives specified for the project, and pre/post surveys were employed to gauge student self-perceptions of learning with regard to physical device components, instrumentation concepts, analog circuitry, digital circuitry, wireless links, printed circuit boards, 3D printing, and cell phone apps. While project-completion rates were lower than anticipated, student responses were positive, particularly with regard to skills learned and experiences with new types of engineering tools. Specific lessons learned from this trial project are enumerated. These will guide the project evolution in future course offerings.
Warren, S., & Carlson, C., & McKittrick, A., & Wang, S. (2018, June), Board 79 : A Wearable Electrocardiograph as a Means to Combine Measurement and Makerspace Concepts in a Biomedical Instrumentation Course Sequence Paper presented at 2018 ASEE Annual Conference & Exposition , Salt Lake City, Utah. 10.18260/1-2--30108
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2018 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015