Asee peer logo

Ceramic Matrix Composites: Combined Materials And Mechanics Curricula

Download Paper |


1997 Annual Conference


Milwaukee, Wisconsin

Publication Date

June 15, 1997

Start Date

June 15, 1997

End Date

June 18, 1997



Page Count


Page Numbers

2.98.1 - 2.98.10



Permanent URL

Download Count


Request a correction

Paper Authors

author page

N. Yu

author page

Peter K. Liaw

Download Paper |

NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Session 1245

Ceramic Matrix Composites: Combined Materials and Mechanics Curricula

P. K. Liaw1 and N. Yu2 1Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200, and 2Department of Mechanical and Aerospace Engineering and Engineering Science, The University of Tennessee, Knoxville, Tennessee 37996-2030


The research in ceramic-matrix composites is of industrial and national importance. For example, continuous fiber reinforced ceramic composites (CFCCs) have been successfully fabricated by chemical vapor infiltration techniques at the Oak Ridge National Laboratory (ORNL) and industrial companies, such as DuPont, 3M/Delta G, B. F. Goodrich, Amercom, Refractory Composites and B. P. Chemicals Ltd. The CFCCs are being recognized as necessary for high-temperature structural applications. The pertinent applications include heat exchangers, combustors, hot gas filters and boiler components in power generation systems, and first walls and high heat flux surfaces in fusion reactors. The technology for fabrication, characterization, modeling, design, and applications of ceramic composites is of crucial importance for improving U.S. industrial competitiveness in the worldwide market.

A three-year project on "Ceramic Matrix Composites - A Combined Research-Curriculum Development (CRCD) Program" has been supported by the National Science Foundation to integrate the long-standing research advances, achieved by the University of Tennessee (UT), Knoxville, and the Oak Ridge National Laboratory (ORNL), on ceramic-matrix composites (CMCs) into the interdisciplinary undergraduate and graduate level curricula of Materials and Mechanics at UT.


Research Significant high-quality and innovative research progress covering a broad class of technologically important areas of CMCs, including fabrication, characterization, modeling and design, has been accomplished at ORNL as well as at UT since early 80's[1-39]. The research advances of CMCs are ready for being integrated into curriculum development. The continued research efforts are currently being supported by the Department of Energy [Fossil and Fusion Energy Materials Programs and Continuous Fiber Ceramic Composites (CFCC) Program] as well as Air Force Office of Scientific Research. The UT/ORNL research accomplishments[1-39] center around the following three pertinent and inter-related areas of CMCs:

Materials Fabrication and Processing Using the conventional CMC fabrication techniques, such as hot-pressing, fiber damage may result from the high temperatures and pressures. Significant progress has been made regarding the fabrication of CMCs using the forced chemical vapor infiltration (FCVI) technique at ORNL, which has overcome the problems of fiber-damage, slow diffusion and restricted permeability.[1-


Yu, N., & Liaw, P. K. (1997, June), Ceramic Matrix Composites: Combined Materials And Mechanics Curricula Paper presented at 1997 Annual Conference, Milwaukee, Wisconsin. 10.18260/1-2--6446

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 1997 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015