Asee peer logo

Developing a cross-disciplinary curriculum for the integration of engineering and design in elementary education

Download Paper |


2013 ASEE Annual Conference & Exposition


Atlanta, Georgia

Publication Date

June 23, 2013

Start Date

June 23, 2013

End Date

June 26, 2013



Conference Session

It's Elementary

Tagged Division

K-12 & Pre-College Engineering

Page Count


Page Numbers

23.385.1 - 23.385.4



Permanent URL

Download Count


Request a correction

Paper Authors


Emily Ann Marasco Schulich School of Engineering, University of Calgary

visit author page

Emily Marasco is a graduate student in electrical engineering at the Schulich School of Engineering, Calgary, Canada. She received an undergraduate degree in computer engineering and a minor in music from the University of Calgary in 2011. Marasco is a registed Engineer-In-Training with the Association of Professional Engineers and Geoscientists of Alberta, and is a member of both ASEE and IEEE.

visit author page

author page

Laleh Behjat P.Eng. University of Calgary

Download Paper |


Developing a cross-disciplinary curriculum for the integration of engineering and design in elementary education Studies have shown that by upper elementary or junior high school grades, students,especially female students, have already decided that the domains of science, mathematics,engineering and technology (STEM) do not interest them [1] [2]. Additional literature showsthat children believe engineers are responsible for repairing and installing technical items, butnot as involved in innovation and design [3] [4]. However, our research indicates that over 90%of post-secondary students entering engineering agree or strongly agree that engineers “designcool things” and “make interesting stuff.” In this paper, we propose to include engineering and design concepts in the studymaterial of elementary schools, to increase the level of interest of students in STEM areas anddecrease the disconnect between children’s perceptions of engineering and reality. We havedeveloped a series of cross-disciplinary modules that are designed to teach STEM concepts aspart of the regular curriculum activities. These modules allow elementary teachers to educatetheir students about engineering principles in the context of English, social studies, fine arts andphysical education curricula. By combining STEM material with other subjects areas, wepropose to (A) increase the appeal of STEM to children who have expressed interest in othersubjects, and (B) provide new methods of learning for children who may struggle with thetechnicality and lack of creativity found in more traditional STEM education. Our modules are specifically designed to improve the learning outcomes found inelementary introduction to electricity. We first identified the primary scientific objectives for therelevant grade and have combined these objectives with content from the rest of the curricula inthree cross-curricular modules:1. Concept learning: In this module, the students will learn the basic concepts of electricity,electrons movement, basic switches, storage of electricity, electric potential, and transfer ofenergy. Students will demonstrate their learning using physical activity, experimentation withwater, and expression through written art, such as the creation of a poem, short story or essay.2. Applications: Students will learn about the historical and social applications of electricity,including the national history of communication and computers. This module includes a hands-on design project that will allow them to create their own communication device. Students willalso learn about the mathematical binary patterns necessary for “speaking computer language.”3. Creative design: Students will express their new knowledge through an artistic exhibition.Students will demonstrate their understanding of electricity concepts through the creation of“circuit art” using a variety of conductive materials. This activity allows the children toreinforce their knowledge in the context of open-ended design, and encourages engineeringdesign and experimentation. By embedding engineering into other areas of education, both students and teachers areable to approach STEM from a creative, sociological and historical angle. These projects areintended to provide elementary school teachers with the means to deliver technical content in acreative and interesting manner. It is our hope that this cross-disciplinary work will help toimprove elementary students’ attitudes towards STEM subjects and the engineering profession.References:[1] Arnot, M., Gray, J., James, M., Rudduck, J., & Duveen, G. (1998). Recent research ongender and educational performance. London: OFSTED.[2] Bussière, P., Cartwright, F., & Knighton, T. (2004). The performance of Canada’s youth inMathematics, Reading, Science and problem solving: 2003 first findings for Canadians aged 15.Ottawa: Human Resources and Skills Development Canada, Council of Ministers of Education,Canada and Statistics Canada.[3] Capobianco, B. M., Diefes-Dux, H. A., Mena, I., & Weller, J. (2011). What is an engineer?Implications of elementary school student conceptions for engineering education. Journal ofEngineering Education, 100(2), 304-328.[4] Cunningham, C. M., Lachapelle, C. P., & Lindgren-Streicher, A. (2005). Assessingelementary school students’ conceptions of engineering and technology. ASEE AnnualConference and Exposition. Portland, OR.

Marasco, E. A., & Behjat, L. (2013, June), Developing a cross-disciplinary curriculum for the integration of engineering and design in elementary education Paper presented at 2013 ASEE Annual Conference & Exposition, Atlanta, Georgia. 10.18260/1-2--19399

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2013 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015