New Orleans, Louisiana
June 26, 2016
June 26, 2016
June 29, 2016
978-0-692-68565-5
2153-5965
Two Year College Division
Diversity
15
10.18260/p.26769
https://peer.asee.org/26769
559
Erik Dunmire is a professor of engineering and chemistry at College of Marin. He received his Ph.D. in Chemical Engineering from University of California, Davis. His research interests include broadening access to and improving success in lower-division STEM education.
Amelito Enriquez is a professor of Engineering and Mathematics at Cañada College in Redwood City, CA. He received a BS in Geodetic Engineering from the University of the Philippines, his MS in Geodetic Science from the Ohio State University, and his PhD in Mechanical Engineering from the University of California, Irvine. His research interests include technology-enhanced instruction and increasing the representation of female, minority and other underrepresented groups in mathematics, science and engineering.
Nicholas Langhoff is an associate professor of engineering and computer science at Skyline College in San Bruno, California. He is also a co-investigator for multiple grant projects at Cañada College in Redwood City, California. He received his M.S. degree from San Francisco State University in embedded electrical engineering and computer systems. His research interests include technology-enhanced instruction, online engineering education, metacognitive teaching and learning strategies, reading apprenticeship in STEM, and the development of novel instructional equipment and curricula for enhancing academic success in science and engineering.
Tom Rebold has chaired the Engineering department at Monterey Peninsula College since 2004. He holds a bachelor’s and master’s degree in electrical engineering from MIT, and has been teaching online engineering classes since attending the Summer Engineering Teaching Institute at Cañada College in 2012.
Eva Schiorring has almost two decades of experience in research and evaluation and special knowledge about STEM education in community colleges and four-year institutions. Ms. Schiorring presently serves as the external evaluator for three NSF-funded projects that range in scope and focus from leadership development to service learning and experimentation with alternative delivery, including online lab courses. Ms. Schiorring is also evaluating a project that is part of the California State University system’s new initiative to increase first year persistence in STEM. In 2014, Ms. Schiorring was one of the first participants in the NSF’s Innovation-CORPS (I-CORPS), a two-month intensive training that uses an entrepreneurship model to teach participants to achieve scalable sustainability in NSF-funded projects. Past projects include evaluation of an NSF-funded project to improve advising for engineering students at a major state university in California. Ms. Schiorring is the author and co-author of numerous papers and served as project lead on a major study of transfer in engineering. Ms. Schiorring holds a Master’s Degree in Public Policy from Harvard University.
A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of the course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years.
Dunmire, E. N., & Enriquez, A. G., & Langhoff, N. P., & Rebold, T., & Schiorring, E. (2016, June), Developing Resources to Support Comprehensive Transfer Engineering Curricula: Assessing the Effectiveness of a Hybrid Materials Science Course Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26769
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015