Asee peer logo

Engaging Students In Multidisciplinary Engineering Problem Solving: An Investigation Of An Airflow Imbalance And Humidification Problem At An Absorbent Hygiene Production Facility

Download Paper |

Conference

2005 Annual Conference

Location

Portland, Oregon

Publication Date

June 12, 2005

Start Date

June 12, 2005

End Date

June 15, 2005

ISSN

2153-5965

Conference Session

Emerging Trends in Engineering Education Poster Session

Page Count

9

Page Numbers

10.533.1 - 10.533.9

DOI

10.18260/1-2--14458

Permanent URL

https://peer.asee.org/14458

Download Count

317

Request a correction

Paper Authors

author page

Rodney Handy

author page

Kevin Schmaltz

author page

Robert Choate

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Session 2005

Engaging Students in Multidisciplinary Engineering Problem Solving: An Investigation of an Airflow Imbalance and Humidification Problem at an Absorbent Hygiene Production Facility

Robert Choate, Kevin Schmaltz, Rod Handy, Jason Arterburn, Joey Willcox Western Kentucky University/Purdue University

Abstract

An investigation of an airflow imbalance and humidification problem was recently conducted at an absorbent hygiene manufacturing location in the southern US. The project’s multidisciplinary approach involved a student engagement team of one senior mechanical engineering student and one graduate student in environmental science, as well as two mechanical engineering faculty members and an environmental science faculty member. The students participated in all phases of the project from initial site visit to report completion and follow-up.

The facility of concern manufactured a fluff pulp and super absorbent polymer product. To assure product quality, a relative humidity range between 30 and 50 percent was required. Relative humidity conditions well above the 50% maximum value were experienced during the summer months due to a significant negative pressure differential induced by process equipment inside the facility. A quantification of the problem and potential solutions were sought to provide better overall control of the facility relative humidity and subsequent product quality.

The student team collected the majority of the field data during a two-month period in the late summer and early fall using an air velocity meter and a Pitot traverse tube to determine volumetric airflow, a standard indoor air quality meter to record temperature and relative humidity, and a differential pressure instrument to measure indoor and outdoor pressure differences. Significant points of possible air infiltration were quantitatively evaluated as well as HVAC, process supply and exhaust air ductwork.

After the data collection was completed, an air mass balance was performed, and the results were compared with approximations supplied by HVAC and process equipment suppliers. Overall air deficit calculations resulted in a negative volumetric flow range of 75,000 to 125,000 CFM, depending upon the operating conditions existing inside the plant. Significant points of air infiltration were assessed and included fork truck overhead doors and employee doorways.

It was concluded that a reduction in the negative pressure differential was imperative to proper humidity control. The recommendation for accomplishing this included a long-term solution of filtering and returning the process air back into the manufacturing space.

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright  2005, American Society for Engineering Education”

Handy, R., & Schmaltz, K., & Choate, R. (2005, June), Engaging Students In Multidisciplinary Engineering Problem Solving: An Investigation Of An Airflow Imbalance And Humidification Problem At An Absorbent Hygiene Production Facility Paper presented at 2005 Annual Conference, Portland, Oregon. 10.18260/1-2--14458

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2005 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015