Virtual On line
June 22, 2020
June 22, 2020
June 26, 2021
Materials
13
10.18260/1-2--34578
https://peer.asee.org/34578
565
I am a first year Ph.D. student in mechanical engineering at the University of Oklahoma. I graduated magna cum laude with a bachelor's degree in aerospace engineering in May 2018 from OU. I currently work as a TA and RA in a new additive manufacturing lab lead by my advisor, Dr. Yingtao Liu. As I start my career in research, I hope to enhance my creativity and learn to identify and solve problems within my field.
Colin Bray is a mechanical engineering graduate student at the University of Oklahoma, with a research focus in additive manufacturing of continuous carbon fiber reinforced polymer composites. He received his bachelor's degree in mechanical engineering from the University of Oklahoma in May 2019.
Zahed Siddique is a Professor of Mechanical Engineering at the School of Aerospace and Mechanical Engineering of University of Oklahoma. His research interest include product family design, advanced material and engineering education. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and is the advisor of OU's FSAE team.
Dr. Yingtao Liu is an assistant professor in the School of Aerospace and Mechanical Engineering at the University of Oklahoma (OU). Before joining OU, he was an assistant research scientist in the AIMS center at Arizona State University from 2012 to 2014. His research expertise include the development, advanced manufacturing, and application of lightweight composites and nanocomposites, smart structures, non-destructive evaluation, structural health monitoring and prognostics.
In the last decade, there has been a dramatic increase in the efforts dedicated to involving undergraduate engineering students in research activities. Since mechanical engineering education includes broad topics, such as materials, mechanics, design, manufacturing, control, and fluids, undergraduate students gain valuable experience by working on interdisciplinary research projects, developing necessary skills for future engineering careers, including graduate studies. Currently, foundational topics in mechanical engineering are taught separately in most engineering programs, without emphasizing the connection among concepts and applications across topics. The advance of additive manufacturing technology provides a unique platform to integrate multiple mechanical engineering topics and courses to enhance undergraduate research and education. This paper reports the education projects and programs being developed at University of (Place holder) to improve undergraduate mechanical engineering education integrating 3-D printing technologies and advanced materials, emphasizing three core topics: design and manufacturing of 3-D printing systems, design of smart nanocomposites, and broad applications of 3D printed materials including wearable and embedded sensors. Specific instructional objective is to improve students’ understanding of key materials, manufacturing, and mechanics concepts by 3-D modeling and 3-D printing of multifunctional polymers and nanocomposites. The long-term goal of this effort is to promote graduate education and to increase graduate enrollment by engaging undergraduate students early in research projects. The integration of advanced manufacturing and smart materials is carried out in three consequential undergraduate projects: (i) design of direct-extrusion based 3-D printing system; (ii) 3-D printing and characterization of nanoparticles reinforced composites. In the first project, two undergraduate students modify filament deposition modeling (FDM) 3-D printers by re-designing the material extrusion component. Fiber reinforced composites can be directly extruded to the desired location from an extrusion component installed in the 3-D printer. By adjusting control parameters and travelling speed of the printing head, materials can be printed with various spatial resolutions. The second project focuses on the development of nanoparticles reinforced composites. Thermoplastic polymers and zinc oxide nanoparticles are mixed at various weight ratio to control materials viscosity, allowing them to be 3-D printed as free-standing samples for characterization and testing. In the last two years, six junior mechanical students have been recruited to the additive manufacturing related undergraduate research projects. They all decided to pursue graduate degrees after completing undergraduate research at the University of (Place holder). This paper will also report students learning outcomes and self-assessment results.
Herren, B., & Cowdrey, R., & Sleeper, W. S., & Bray, C., & Siddique, Z., & Liu, Y. (2020, June), Enhancing Undergraduate Research Across Disciplines: Integration of 3-D Printing and Advanced Materials to Engage Students Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . 10.18260/1-2--34578
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2020 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015