Asee peer logo

Fostering Adaptive Expertise: Design Based Instruction in High School Engineering

Download Paper |


2013 ASEE Annual Conference & Exposition


Atlanta, Georgia

Publication Date

June 23, 2013

Start Date

June 23, 2013

End Date

June 26, 2013



Conference Session Design

Tagged Division

K-12 & Pre-College Engineering

Page Count


Page Numbers

23.612.1 - 23.612.15

Permanent URL

Download Count


Request a correction

Paper Authors


Pat Ko University of Texas, Austin

visit author page

Pat Ko is a doctoral student in STEM Education at the University of Texas at Austin. His interests include K-12 engineering programs, computational thinking and educational robotics.

visit author page

author page

Stephanie Baker Peacock The University of Texas - Austin

author page

Taylor Martin Utah State University

author page

Jennifer Rudolph


Noel Hector Ramos Department of Defense Dependent Schools

visit author page

Born in El Paso, Tex., Noel Ramos attended Department of Defense Dependent Schools (DoDDS) in Heidelberg and Kaiserslautern, Germany for his primary and secondary education. He then graduated from the University of Texas at Austin with a B.S. in Physics and a M.A. in STEM education. In 2012, Ramos earned the N.B.T.C. in A.Y.A. Mathematics. He currently works as a mathematics and engineering teacher for the DoDDS Mediterranean district.

visit author page

Download Paper |


    In  recent  years,  there  has  been  a  surge  in  demand  for  high  school  engineering  classes.  For  example,  Texas  wants  to  have  at  least  one  trained  engineering  teacher  in  each  of  its  2000+  high  schools.  Since  “engineering”  includes  many  specializations  such  as  mechanical,  electrical,  and  chemical  engineering,  numerous  experts  agree  that  at  the  high  school  level,  engineering  should  focus  on  design,  allowing  the  course  to  draw  from  all  of  these  fields.       With  the  growing  view  of  design  engineering  as  creative  work  on  novel  problems,  it  is  useful  to  frame  engineering  education  in  terms  of  adaptive  expertise.  Adaptive  experts  work  both  efficiently  (use  core  knowledge  to  solve  common  problems  quickly  and  accurately)  and  innovatively  (think  fluidly  to  solve  new  problems).    Traditional  lecturing  tends  toward  increasing  efficiency,  but  not  necessarily  innovation.  In  contrast,  challenge-­‐based  instruction  (CBI)  has  been  shown  to  improve  both  efficiency  and  innovation  in  undergraduate  engineering  students.  This  work  centers  on  a  new  high  school  engineering  curriculum  that  has  adapted  CBI  for  engineering  design,  called  design-­‐based  instruction  (DBI),  to  increase  student  innovation.       The  subjects  of  the  study  are  students  in  seven  schools  that  implemented  the  pilot  high  school  engineering  curriculum  during  the  2010-­‐2011  school  year.  The  schools  span  several  districts  in  urban  and  suburban  settings  and  include  both  high  and  low  socio-­‐economic  populations.  Data  was  collected  from  over  100  consented  students  in  the  course.       The  pilot  curriculum  consisted  of  four  major  units:   1) Energy:  Students  learned  about  various  methods  of  energy  generation,   and  they  designed,  built,  tested,  and  optimized  wind  turbine  blades.   2) Reverse  Engineering:  Using  a  hair  dryer  as  an  example,  students   performed  a  needs  analysis,  wrote  performance  metrics,  and  predicted   the  inner  workings  of  the  dryer.   3) Robotics:  Students  used  LEGO  MINDSTORMS©  to  perform  various  tasks   while  learning  mechanical  engineering  concepts  and  basic  programming.   4) Final  design  project:  Students  worked  on  a  multi-­‐week  capstone  group   project  concluding  with  a  class  presentation.     For  each  of  the  first  three  units,  students  were  given  pre  and  posttests  consisting  of  questions  that  attempt  to  illicit  innovative  thinking  from  the  students,  typically  requiring  them  to  think  at  a  broader  level  of  abstraction.  Example  items  include  asking  students  to  explain  outcomes,  to  imagine  situations,  and  to  use  their  judgment.  In  addition,  we  surveyed  the  participants  about  their  beliefs  on  innovation  and  efficiency  in  engineering  design  at  the  beginning  and  end  of  the  course.   We  used  repeated  measures  ANOVAs  in  our  analysis.  Students’  scores  increased  significantly  from  pre  to  posttest  on  both  the  energy  and  robotics  units.  The  improvement  on  the  reverse  engineering  test  was  insignificant.  Students’  beliefs  about  innovation  and  efficiency  did  not  change  significantly  over  time,  but  they  related  engineering  design  to  innovation  significantly  more  than  to  efficiency.     This  pilot  engineering  course  exhibits  the  promise  of  DBI  to  improve  innovation  in  high  school  students  over  a  single  academic  year.  The  curriculum  writers  will  be  tuning  the  curriculum  to  increase  the  impact  of  DBI  on  student  design  knowledge  and  beliefs.    

Ko, P., & Peacock, S. B., & Martin, T., & Rudolph, J., & Ramos, N. H. (2013, June), Fostering Adaptive Expertise: Design Based Instruction in High School Engineering Paper presented at 2013 ASEE Annual Conference & Exposition, Atlanta, Georgia.

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2013 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015