Asee peer logo

Helical Learning Model Applied In An Industrial Electrochemistry Engineering Course

Download Paper |

Conference

2007 Annual Conference & Exposition

Location

Honolulu, Hawaii

Publication Date

June 24, 2007

Start Date

June 24, 2007

End Date

June 27, 2007

ISSN

2153-5965

Conference Session

ChE: Innovations in Student Learning

Tagged Division

Chemical Engineering

Page Count

12

Page Numbers

12.799.1 - 12.799.12

DOI

10.18260/1-2--2976

Permanent URL

https://peer.asee.org/2976

Download Count

53

Request a correction

Paper Authors

biography

Eric Peterson Lamar University

visit author page

Mr. Peterson is presently involved in his Doctoral research at the Department of Chemical Engineering of Lamar University under the supervision of Dr. Cocke. His research theme is Fuel Cell Energy Systems. He has been an Instructor for nineteen years in the faculty of Physics, Math, and Engineering at Highland Community College of Freeport, Illinois.

visit author page

biography

David Cocke Lamar University

visit author page

Dr. Cocke currently serves as a Professor in the Department of Chemical Engineering at Lamar University of Beaumont, Texas. He has also been the Gill Professor of Chemistry and Chemical Engineering for last seventeen years. His research interests include Environmental and Surface Chemistry, Catalysis, Advanced Materials, Biomedical Research, Capillary Electrophoresis, Advanced Electrochemistry and Sensors.

visit author page

biography

Jewel Gomes Lamar University

visit author page

Dr. Gomes currently serves as Postdoctoral Researcher at the Department of Chemical Engineering of Lamar University under Dr. Cocke. His research interests are Atmospheric Chemistry, Matrix Isolation Spectroscopy, Gaussian Simulation, Wastewater Management, Materials Characterization, and Electrochemistry. He is also actively involved with Problem Based Learning (PBL) laboratory of Lamar.

visit author page

biography

Hector Casillas Lamar University

visit author page

Mr. Moreno is currently enrolled as a Doctoral Student at the Department of Chemical Engineering of Lamar University under the supervision of Dr. Cocke. His research topic is Wastewater Management with Electrocoagulation.

visit author page

biography

Morgan Reed Lamar University

visit author page

Mr. Reed is a pursuing a Doctorate in Chemical Engineering at Lamar University. Interests include Modeling of Mass and Thermal Transport, and Catalytic Material in Fuel Cell Systems.

visit author page

biography

Jerry O'Connor San Antonio College

visit author page

Mr. O'Connor has been teaching physics (and occasionally engineering and math) courses since 1980. He is currently the Department Chairperson for Physics, Engineering, & Architecture at San Antonio College, and has been involved in numerous initiatives to integrate the findings of physics and engineering education research with education practice

visit author page

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

HELICAL Learning Model Applied in an Industrial Electrochemistry Engineering Course

Abstract

In education, a popular model employed to represent the learning process is typically portrayed as a four-stage process signified by a cycle in a two-dimensional circular path. This cycle can be repeated by revisiting topics at increasing levels of sophistication in order to produce what is known as a spiral curriculum.

In this presentation, a variation of Kolb’s two-dimensional learning cycle model is offered that represents the learning cycle as if it were a three-dimensional spiral or helix, with successive turns associated with increases in Bloom’s Taxonomic level. This representation is explored and developed, with a specific example from a chemical engineering course offered in Industrial Electrochemistry. This more comprehensive concept-centered model for the learning cycle explicitly includes higher order thinking skills to promote creative thinking, through the application of concepts and can be used to develop more effective curricula and course instruction. Specifically, our sample class consists of four teams, each of which is responsible for becoming expert in the concepts associated with an area of science and another of application. Transfer of content is student driven while topics are explored. Students teaching each other allows for synergistic enhanced motivation to explore, with concurrent ultimate improvement in the retention of core concepts by the entire course population.

Introduction

Engineering education is inherently a global issue1 that compliments global engineering practice2. A paramount effort of engineering education is linking learning theory with recognized engineering learning goals, as illustrated by the ABET (a-k) criteria3, while producing new models4, 5 for instructional and learning practices. A cornerstone of modern engineering education is the stimulation of creative thinking in engineering students that requires helping the students learn how to think via idea creation and idea evaluation processes.

Using a global stage and metaphorical analogies allow one to envision the global nature of the issue. Recognition of the currents (learning pathways) within the seas of knowledge and how they influence the learning of engineering is providing new horizons for designing instruction. Traditional pathways are shored up by educators who limit the learning process when they restrict students to conventional thinking. In order to break out of this paradigm, educators need to make tentative forays into evolving learning practices. A desired outcome is the development of the student’s independent problem solving skills and willingness to risk creative solutions. Exposure to, and acquaintance with, novel ideas fosters skill development and critical thinking through processes that are not fully understood. It is from wading in these uncharted waters that one develops and hones the requisite expected “navigational” skills to

3/5/2007 Page 1 of 11 AC 2007Paper2835

Peterson, E., & Cocke, D., & Gomes, J., & Casillas, H., & Reed, M., & O'Connor, J. (2007, June), Helical Learning Model Applied In An Industrial Electrochemistry Engineering Course Paper presented at 2007 Annual Conference & Exposition, Honolulu, Hawaii. 10.18260/1-2--2976

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2007 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015