Asee peer logo

Implementing Problem Based Learning in Materials Science

Download Paper |


2011 ASEE Annual Conference & Exposition


Vancouver, BC

Publication Date

June 26, 2011

Start Date

June 26, 2011

End Date

June 29, 2011



Conference Session

Active and Project-Based Learning

Tagged Division

Mechanical Engineering

Page Count


Page Numbers

22.821.1 - 22.821.14

Permanent URL

Download Count


Request a correction

Paper Authors


David H. Jonassen University of Missouri, Columbia

visit author page

Dr. David Jonassen is Curators’ Professor at the University of Missouri where he teaches in the areas of Learning Technologies and Educational Psychology.

visit author page


Sanjeev K. Khanna University of Missouri

visit author page

Dr. Khanna is a La Pierre Professor in mechanical and aerospace engineering department at the University of Missouri. His pedagogical research interests include integrated teaching of mechanics, materials and design, introducing problem based learning in undergraduate level engineering courses, and promoting the engineering discipline among high school teachers and students. He is the coauthor of a book titled "Mechanics of Materials: a Modern Integration of Mechanics and Materials in Structural Design," published by Elsevier Science publishers.

visit author page

Download Paper |


Implementing  Problem  Based  Learning  in  Materials  Science       Problem  based  learning  (PBL)  is  a  method  of  instruction  that  affords  the  learner  the  opportunity  to  be  problem-­‐solvers  rather  than  passive  recipients  of  information.  PBL  was  first  implemented  within  the  medical  schools,  however,    there  are  few  PBL  initiatives  the  engineering,  especially  at  the  undergraduate  level.         Supported  by  a  NSF  award,  we  are  experimentally  comparing  a  PBL  version  of  a  junior  level  course,  Engineering  Materials,  with  a  traditional,  topic-­‐based  version  of  the  course  in  order  to  assess  the  effects  of  problem-­‐based  learning  on  undergraduate  students’  abilities  to  solve  professional  problems,  engage  in  higher-­‐order  thinking  and  reasoning,  and  develop  self-­‐regulated  learning  skills  that  can  be  applied  throughout  their  studies  and  careers.    In  the  PBL  version,  students  work  in  groups  of  five  to  solve  five  materials  selection  problems  and  three  materials  failure  problems.    Students  are  guided  to  determine  the  performance  problem  and  necessary  performance  requirements,  material  properties  required  to  fulfill  those  performance  requirements,  structural  properties  that  afford  those  material  properties,  materials  selected  and  processing  requirements,  and  an  argument  supporting  their  choice.     This  paper  reports  on  implementation  issues  in  the  first  year  of  the  project.  Groups  are  being  thoroughly  compared  using  multiple  instruments  during  the  2010-­‐2011  academic  year.  The  present  study  serves  to  understand  student  perceptions  of  the  PBL  process.  Specifically,  the  study  seeks  to  elucidate  the  learning  processes,  group  dynamics,  and  implementation  issues  that  play  a  role  in  the  PBL  implementation.  In  this  implementation  study,  we  sought  to  determine  student  perceptions  of  the  PBL  version  of  the  course  in  order  to  redesign  course  requirements  for  the  second,  experimental  year.     At  the  end  of  the  PBL  semester,  15  students  completed  a  semi-­‐structured  interview.    Data  were  recorded  and  transcribed.    During  the  analysis  phase,  a  grounded  theory  approach  to  analyze  the  interviews.  Two  researchers  independently  analyzed  the  data  and  created  axial  codes.  After  the  initial  pass,  the  researchers  later  reconvened  to  understand  similarities  and  solidify  final  coding  categories.    Analysis  identified  the  following  issues:   • Disconnect  between  problems  and  exams  (separate  activities  that  invoked   separate  study  strategies)   • Little  idea  of  how  much  they  learned  from  problems  (conception  of  learning   is  so  dominated  by  exams)   • Ignored  argument  scaffold   • Need  for  more  feedback  after  completing  problems   • Poor  collaboration  strategies   • Requests  for  lectures     This  implementation  represented  an  instructional  paradigm  shift  for  students,  who  had  developed  excellent  scripts  for  traditional  learning.  Student  needs  will  lead  to  more  feedback,  more  collaborative  support,  and  the  elimination  of  traditional  exams  in  the  next  implementation.    

Jonassen, D. H., & Khanna, S. K. (2011, June), Implementing Problem Based Learning in Materials Science Paper presented at 2011 ASEE Annual Conference & Exposition, Vancouver, BC.

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2011 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015