Asee peer logo

Industrial Engineering Beyond Numbers: Optimizing under Ethics

Download Paper |

Conference

2017 ASEE Annual Conference & Exposition

Location

Columbus, Ohio

Publication Date

June 24, 2017

Start Date

June 24, 2017

End Date

June 28, 2017

Conference Session

Industrial Engineering Division Tech Session 1: IE-ing a Broader Perspective

Tagged Divisions

Engineering Management, Engineering Economy, and Industrial Engineering

Page Count

20

DOI

10.18260/1-2--28521

Permanent URL

https://peer.asee.org/28521

Download Count

1814

Request a correction

Paper Authors

biography

Alejandro Salado Virginia Tech Orcid 16x16 orcid.org/0000-0001-9378-0795

visit author page

Dr. Alejandro Salado is an assistant professor of systems science and systems engineering with the Grado Department of Industrial & Systems Engineering at Virginia Tech. His research focuses on unveiling the scientific foundations of systems engineering and using them to improve systems engineering practice. Before joining academia, Alejandro spent over ten years as a systems engineer in the space industry. He is a recipient of the Fabrycky-Blanchard Award for Systems Engineering Research and the Fulbright International Science and Technology Award. Dr. Salado holds a BSc/MSc in electrical engineering from Polytechnic University of Valencia, an MSc in project management and a MSc in electronics engineering from Polytechnic University of Catalonia, the SpaceTech MEng in space systems engineering from Delft University of Technology, and a PhD in systems engineering from the Stevens Institute of Technology. He is a member of INCOSE and a senior member of IEEE and IIE.

visit author page

Download Paper |

Abstract

Generally speaking, the essence of industrial engineering is optimization. Simplistically, the education of industrial engineers reduces to learning a number of techniques with which they can mathematically model a number of scenarios and optimize a mathematical function that is subjected to various mathematical constraints. Reality works differently though. The implementation of optimization actions in a real context yields direct and indirect impacts to society and to individual people. They are further strengthened when projects are implemented or executed in international settings, where different systems of laws, regulations, cultures, and values play a role. Several examples in the past have shown dramatic consequences for not considering ethical implications of engineering decisions in real projects. Therefore, exposing students to ethical conflicts, as well as educating them in the skills, competences, and tools necessary to cope with them, are necessary in the education of every engineer. This paper showcases the integration of ethics into an existing, traditional industrial engineering undergraduate course at the senior level. In particular, we show how traditional optimization assignments can be reformulated to blend mathematics and ethics. Therefore, we do not follow the path of developing an independent, elective course that focuses on ethical issues. Furthermore, integration of ethics is not performed through case studies on which students can reflect on past experiences. Instead, we embed ethical issues in traditional industrial engineering knowledge. In this way, ethical conflicts reveal themselves to students as students attempt to solve a traditional industrial engineering assignment. In this way, students are exposed to an ethical conflict with no baseline course of action, but they need to find alternatives and choose their own course of action without any prior or existing information about potential outcomes and impacts of their decisions. While traditional industrial engineering techniques and tools help in informing the decision, students realize that they are not sufficient to provide an answer to the problem by themselves. Personal decision making is necessary. Answers to assignments are then shared and discussed in class with the objectives of understanding, accepting, and embracing solution diversity as a function of personal morality. This is key for students to understand that there are not “by the book” answers to resolving ethical conflicts, but that solutions reduce in several cases to personal morality. Finally, students also learn about the ability and obligation of an engineer to use “no” as a valid and professional engineering solution, which can be used when there is a conflict between an engineering assignment, its solution, its recommendations, and personal morality.

Salado, A. (2017, June), Industrial Engineering Beyond Numbers: Optimizing under Ethics Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. 10.18260/1-2--28521

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2017 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015