Asee peer logo

Integrating an Introduction to Engineering Experience into an University Seminar Course

Download Paper |

Conference

2016 ASEE Annual Conference & Exposition

Location

New Orleans, Louisiana

Publication Date

June 26, 2016

Start Date

June 26, 2016

End Date

August 28, 2016

ISBN

978-0-692-68565-5

ISSN

2153-5965

Conference Session

NSF Grantees Poster Session I

Tagged Topics

Diversity and NSF Grantees Poster Session

Page Count

10

DOI

10.18260/p.25784

Permanent URL

https://peer.asee.org/25784

Download Count

107

Request a correction

Paper Authors

biography

Kimberly Grau Talley P.E. Texas State University, San Marcos Orcid 16x16 orcid.org/0000-0002-6235-0706

visit author page

Dr. Kimberly G. Talley is an assistant professor in the Department of Engineering Technology, Senior Research Fellow and Maker Space Co-Director for the LBJ Institute for STEM Education and Research at Texas State University, and a licensed Professional Engineer. She received her Ph.D. and M.S.E. from the University of Texas at Austin in Structural Engineering. Her undergraduate degrees in History and in Construction Engineering and Management are from North Carolina State University. Dr. Talley teaches courses in the Construction Science and Management Program, and her research focus is in student engagement and retention in engineering and engineering technology education. Contact: kgt5@txstate.edu

visit author page

biography

Araceli Martinez Ortiz Texas State University, San Marcos

visit author page

Araceli Martinez Ortiz, PhD., is Research Assistant Professor of Engineering Education in the College of Education at Texas State University. She leads a comprehensive research agenda related to issues of curriculum and instruction in engineering education, motivation and preparation of under served populations of students and teachers and in assessing the impact of operationalizing culturally responsive teaching in the STEM classroom. As executive director of the LBJ Institute for STEM Education and Research, she collaborates on various state and national STEM education programs and is PI on major grant initiatives through NASA MUREP and NSF Improving Undergraduate STEM Education and NSF DUE . Araceli holds Engineering degrees from The University of Michigan and Kettering University. She holds a Masters degree in Education from Michigan State and a PhD in Engineering Education from Tufts University.

visit author page

biography

Clara Novoa Texas State University, San Marcos

visit author page

Dr. Clara Novoa is an Associate Professor at the Ingram School of Engineering at Texas State University. She has a Ph.D. in Industrial Engineering and her research areas are Dynamic and Stochastic Programming and Parallel Computing to solve mathematical optimization problems applied to logistics and supply chain. Dr. Novoa has 15 years of experience in academia and 4 years of experience in industry. Dr. Novoa is receiving funding from NSF through SPARK and Texas State STEM Rising Stars. SPARK is a four years grant that looks to increase the recruitment and retention of female in engineering, computer science, and related fields by providing scholarships for low-income and talented students. Texas State STEM Rising Stars is a four years grant committed to increase the first and second year retention and graduation rates of students in STEM. Dr. Novoa is also the advisor of the Society of Women Engineers. She is committed to research on strategies to achieve gender equity and cultural inclusiveness in science and engineering.

visit author page

biography

Vedaraman Sriraman Texas State University, San Marcos

visit author page

Dr. Vedaraman Sriraman is a Piper and University Distinguished Professor of Engineering Technology and Associate Director of the LBJ Institute for STEM Education and Research at Texas State University. Dr. Sriraman's degrees are in mechanical and industrial engineering. His research interests are in engineering education, sustainability, and applied statistics. In the past, he has implemented several grants from the NSF, NASA and SME-EF. He has also received several teaching awards at Texas State.

visit author page

Download Paper |

Abstract

Retention statistics show that the most drastic decline in retention rates for engineering and engineering technology majors at Texas State University occur after the first and second years. To address this issue, the LBJ Institute of STEM Education and Research at Texas State is employing a multi-faceted approach to implement proven strategies for increasing student retention as a part of an NSF IUSE (Improving Undergraduate STEM Education) grant, Texas State STEM Rising Stars. One of these strategies is to introduce a new first-year introduction to engineering/engineering technology course that was designed to support student retention. A new course could not simply be added to the existing curriculum of the university’s engineering and engineering technology degrees, however, as state law capped the hours required for an undergraduate degree. Instead, the researchers customized an introduction to the university freshman seminar course for engineering and engineering technology majors. This course design adapted elements from successful first-year introductory classes in Engineering and Engineering Technology at other universities. Besides fostering a learning community between Engineering and Engineering Technology students, the objectives of the new course include: (1) introduction of design and problem solving through project-based learning and (2) familiarization with the careers paths and practices of Engineering and Engineering Technology through tours and talks by industry representatives and faculty and (3) providing a common experience that introduces university resources to support the development of the students and prepares them for academic success. The pilot section of Introduction to Engineering in University Seminar was offered in Fall 2015. As these seminar courses are offered in the fall semesters, the researchers will be able to analyze changes in engineering design self-efficacy over the semester and conduct focus groups with students to refine the course content prior to an expanded second round of experimental sections that will be put in place for Fall 2016. This paper presents this work in progress, including preliminary results and lessons learned from this integration of Introduction to Engineering with University Seminar.

Talley, K. G., & Ortiz, A. M., & Novoa, C., & Sriraman, V. (2016, June), Integrating an Introduction to Engineering Experience into an University Seminar Course Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.25784

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015