Virtually Hosted by the section
November 12, 2021
November 12, 2021
November 13, 2021
11
10.18260/1-2--38438
https://peer.asee.org/38438
435
Paige J. Harvey received her B.S. degree in electrical and computer engineering from Morgan State University, Baltimore, MD, in 2018. She is currently a Ph.D student at Morgan, in the Department of Electrical and Computer Engineering, and affiliated with the Center for Reverse Engineering and Assured Microelectronics (CREAM) Research Lab as well as the Cybersecurity Assurance and Policy (CAP) Center, under the direction Dr. Kevin T. Kornegay. Her research focus is security and privacy of the Internet of Medical Things (IoMT).
Otily Toutsop is a Ph.D. student with a concentration on secure embedded systems in the Electrical and Computer Engineering department at Morgan State University. She is also affiliated with the Cybersecurity Assurance and Policy (CAP) center. She received her bachelor’s degree in Computer Science. Her research interests focus on IoT Security, machine learning, artificial intelligence, cyber-physical system, software security, home automation systems, and networking security. Her work has been published in several conferences, including the IEEE Computer Science, IEEE Applied Imagery Pattern Recognition Workshop (AIPR), IEEE International Conference on Internet of Things: Systems, Management and Security (IoTSMS), IEEE Future Internet of Things and Cloud (FiCloud), IEEE International Conference on Smart Innovations (SCI).
Kevin T. Kornegay received the B.S. degree in electrical engineering from Pratt Institute, Brooklyn, NY, in 1985 and the M.S. and Ph.D. degrees in electrical engineering from the University of California at Berkeley in 1990 and 1992, respectively. He is currently the IoT Security Professor and Director of the Cybersecurity Assurance and Policy (CAP) Center for Academic Excellence in the Electrical and Computer Engineering Department at Morgan State University in Baltimore, MD. His research interests include hardware assurance, reverse engineering, secure embedded systems, and smart home/building security. Dr. Kornegay serves or has served on the technical program committees of several international conferences, including the IEEE Symposium on Hardware Oriented Security and Trust (HOST), IEEE Secure Development Conference (SECDEV), USENIX Security 2020, the IEEE Physical Assurance and Inspection of Electronics (PAINE), and the ACM Great Lakes Symposium on VLSI (GLSVLSI). He serves on the State of Maryland Cybersecurity Council and the National Academy of Sciences Intelligence Community Science Board Cybersecurity Committee. He is the recipient of numerous awards, including He is the recipient of multiple awards, including the NSF CAREER Award, IBM Faculty Partnership Award, National Semiconductor Faculty Development Award, and the General Motors Faculty Fellowship Award. He is currently a senior member of the IEEE and a member of Eta Kappa Nu and Tau Beta Pi engineering honor societies.
The Internet of Medical Things (IoMT) is a rapidly growing community of intelligent medical technologies dedicated to sensing, monitoring, and reporting patient vitals, often with the intent of communicating findings with healthcare professionals (HCPs). For the past two summers, 2020 and 2021, four undergraduate electrical/computer engineering and computer science students, and two high school STEM teachers, worked with two graduate student mentors to explore various IoMT use cases via their participation in a Research Experiences for Undergraduates (REU) and Teachers (RET) program. During both summers, the REU/RET program was conducted remotely over nine weeks, not including pre-summer engagement activities. These pre-summer activities were designed to promote and encourage healthy mentor-mentee interactions while also providing an additional opportunity for participants to acclimate to their research projects before the program start.
Throughout this work, participants were able to gain or further develop skills in some of the following areas: Ethical Hacking, Data Science, Intrusion Detection Systems, Linux, Machine Learning, Networking, and Python, as well as interact with a designated smart device and testing environment. In the first summer, participants were assigned a smart glucose meter and tasked with 1) exploiting the potential threats associated with installing smart devices onto unsecured network configurations via address resolution protocol (ARP) poisoning, and 2) exploring social engineering tactics through cloning the device user application. Additionally, in the following summer, participants became acquainted with an existing IoMT dataset, developing an intrusion detection system (IDS) to accurately distinguish between normal and abnormal network packets due to a deployed Man-in-the-Middle (MitM) attack. The outputs of this work include: both sets of participants preparing verbal presentations, including demonstrations, and written papers outlining their results and experiences. After the project, participants should understand and implement a set of guidelines for utilizing IoMT devices more securely and with added privacy.
Harvey, P. J., & Toutsop, O., & Kornegay, K. (2021, November), Introducing and Facilitating Internet of Medical Things (IoMT) Research for Undergraduate Students and High School Teachers Paper presented at 2021 Fall ASEE Middle Atlantic Section Meeting, Virtually Hosted by the section. 10.18260/1-2--38438
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2021 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015