Asee peer logo

Multidisciplinary Research and Teaching by Means of Employing FTIR Spectroscopic Imaging System and Characterization Techniques

Download Paper |

Conference

2020 ASEE Virtual Annual Conference Content Access

Location

Virtual On line

Publication Date

June 22, 2020

Start Date

June 22, 2020

End Date

June 26, 2021

Conference Session

NSF Grantees: Student Learning 1

Tagged Topics

Diversity and NSF Grantees Poster Session

Page Count

10

DOI

10.18260/1-2--34988

Permanent URL

https://peer.asee.org/34988

Download Count

447

Request a correction

Paper Authors

biography

Zahrasadat Alavi California State University, Chico

visit author page

Dr. Zahrasadat Alavi, an Assistant Professor at the Department of Electrical and Computer Engineering at California State University Chico, received her PhD in Electrical Engineering from University of Wisconsin Milwaukee in May 2015. She received her B.Sc. and M.Sc. from Amirkabir University (Polytechnic of Tehran) with honors in 2007 and 2009 respectively, and another Master of Science from University of Wisconsin Milwaukee (UWM) in Electrical Engineering in 2012. She was an Assistant Professor at the Electrical and Instrumentation Department of Los Medanos College during 2016-2017 academic year. She was an Adjunct Faculty at San Francisco State University and Diablo Valley College during 2015-2016 academic year, and an instructor at UWM from January 2014 until May 2015. She is the principal investigator on several grants such as National Science Foundation Major Research Instrumentation for the acquisition of FTIR Spectroscopic Imaging system, Student Success Grant, and CSU Chico Research, Scholarship and Creative Activity. She is also a co- principal investigator on another NSF-MRI grant and an Office of Naval Research Grant.

She is currently the director of Alavi FTIR Spectroscopic Imaging Lab (AFISIL) and supervises multiple undergraduate students in their research. Her research interest includes characterization of biological samples by employing FTIR Spectroscopic Imaging techniques and developing novel digital image processing and analysis algorithms to process the collected FTIR-spectro-microscopic data. Additionally, Dr Alavi is a member of IEEE, ASEE and she has been an active member of McLeod Institute of Simulation Science and pursues research in advanced control systems simulation. Dr Alavi also conducts research in promoting electrical engineering undergraduate education and is the recipient of the best paper award in the Electrical and Computer Engineering Division of American Society of Engineering Education.

visit author page

Download Paper |

Abstract

This paper focuses on discussing the efforts made to engage students in multi-disciplinary research and integrate teaching and research in the areas of FTIR Spectro- microscopy and image processing and analysis. The author (PI) and co-PIs acquired a Fourier Transform Infrared (FTIR) Spectroscopic Imaging equipment through the National Science Foundation- Major Research Instrumentation (NSF- MRI) grant (#1827134). This project aims to use the equipment to conduct undergraduate and graduate research projects and teach undergraduate and graduate classes. The NSF awarded the California State University Chico (CSU Chico) $175,305 to acquire an FTIR spectrometer and microscope, which are important tools for chemical characterization of samples with infrared active molecules. FTIR Spectroscopic Imaging System especially provides accurate chemical images that reveal the variations in images’ pixels which are mappings of constituent materials of samples rather than a single visible image with slight variations. By employing this equipment in research and the Image Processing course, students can learn how to collect, process and analyze the imaging data of samples and the corresponding spectral data. The students not only will learn how to process a single chemical image, but also will work with the data cubes to consider the pixel intensities along the IR spectrum, experience working with big data, hone the skills to design experiments, analyze larger data sets, develop pre- and post-image processing techniques, and apply and refine math and programming skills. Image processing course conventionally is based on math, digital signal and systems, and requires programming skills such as Matlab, C++, and Python. along with the mentioned knowledge. Additionally, the research conducted by this equipment promotes collaboration between engineering major students and science major students. In this paper, the author will explain how collecting data through running experiments with the FTIR Spectroscopic Imaging equipment helps students visualize theory and relate it to real world problems. This paper also discusses the results of engaging undergraduate students from various majors in research. Moreover, it will discuss some of the projects that were conducted by undergraduate students and their learning outcomes. The objective of the research projects was material characterization towards contribution to health by employing FTIR Spectroscopic Imaging System.

Alavi, Z. (2020, June), Multidisciplinary Research and Teaching by Means of Employing FTIR Spectroscopic Imaging System and Characterization Techniques Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . 10.18260/1-2--34988

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2020 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015