Chicago, Illinois
June 18, 2006
June 18, 2006
June 21, 2006
2153-5965
ChE: Departmental Issues and Integrating Freshmen into the ChE Program
Chemical Engineering
12
11.1041.1 - 11.1041.12
10.18260/1-2--850
https://peer.asee.org/850
880
Chuck Coronella is Associate Professor of Chemical Engineering at the University of Nevada, Reno, where he has taught since 1993. His Ph.D. is from the University of Utah, and B.S. and B.A. from Lehigh University. He has research interests in model-predictive control and in renewable energy. His teaching interests are wide ranging, and include undergraduate and graduate courses in chemical engineering, as well as engineering education of the broader society.
Project-based learning in a first-year chemical engineering course: Evaporative Cooling Abstract
The challenges of engaging first-year engineering students are well known. Many students come to an engineering curriculum poorly prepared and with substantial misunderstanding of what engineers actually do. Too frequently, recent high-school graduates are unprepared to make the commitment to do the hard work required to complete their degree in four years. Some students who might otherwise become successful engineers change their major to one that has more immediate appeal, is an easier pathway to graduation, or is taught by instructors who address the students' preferred learning styles directly.
At engineering colleges around the country, many inventive programs have recently begun to address these issues1,2. Along with recognition that the traditional lecture-based format is far from ideal, many programs and departments have created innovative problem-based- learning first-year courses3,4. The perception is that giving students the opportunity to design, build, and test a "widget" will engage them more fully, motivate them to study harder, make a more educated choice of major, and commit to the major. Students whose preferred learning style requires active, hands-on activity discover that engineering may suit them well, in contrast to what they may have concluded from lecture-based courses.
This paper is a report on one such effort at the University of Nevada, Reno, funded by the Hewlett Foundation. A new course has been developed in chemical engineering with a green- engineering theme, and uses a project as a vehicle to learn teamwork, to practice engineering design, measurements, and graphical data representation. We also address academic study skills and use Felder's Index of Learning Styles (ILS) to enable students to be aware explicitly of their own learning style.
The project is to design, build, and test an evaporative cooler, and is conducted in teams of 3 or 4 students, that endure for the semester. Assessment criteria include evaporative cooler performance, cost, safety, and style. Safety is given prominent focus repeatedly throughout the semester. Students learn how to use a psychrometric chart and apply it to rate the performance of their cooler. The nature of measurements is discussed. Teamwork skills, including problem solving, are addressed. Students practice engineering design in a formal manner, with several repetitions of design versus performance, safety audits, and cost playing important roles.
The class incorporates several teaching methods, to target learners of all types. Sensors benefit directly from the project, and seeing the results of their work, while intuitive learners do well with the performance calculations, and also with the varied engineering calculations included in the text by Solen and Harb5. Visual learners do well with the psychrometric chart and the design diagrams, while verbal learners gain from the classroom discussions and from the book reading. Active learners especially benefit from the incorporation of this project, since it requires hands-on building in a group. Reflective learners profit from writing the reports and completing the homework assignments. Both inductive and deductive learning styles are
Coronella, C. (2006, June), Project Based Learning In A First Year Chemical Engineering Course: Evaporative Cooling Paper presented at 2006 Annual Conference & Exposition, Chicago, Illinois. 10.18260/1-2--850
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2006 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015