Asee peer logo

Project Based Learning In A First Year Chemical Engineering Course: Evaporative Cooling

Download Paper |

Conference

2006 Annual Conference & Exposition

Location

Chicago, Illinois

Publication Date

June 18, 2006

Start Date

June 18, 2006

End Date

June 21, 2006

ISSN

2153-5965

Conference Session

ChE: Departmental Issues and Integrating Freshmen into the ChE Program

Tagged Division

Chemical Engineering

Page Count

12

Page Numbers

11.1041.1 - 11.1041.12

Permanent URL

https://peer.asee.org/850

Download Count

85

Request a correction

Paper Authors

biography

Charles Coronella University of Nevada-Reno

visit author page

Chuck Coronella is Associate Professor of Chemical Engineering at the University of Nevada, Reno, where he has taught since 1993. His Ph.D. is from the University of Utah, and B.S. and B.A. from Lehigh University. He has research interests in model-predictive control and in renewable energy. His teaching interests are wide ranging, and include undergraduate and graduate courses in chemical engineering, as well as engineering education of the broader society.

visit author page

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Project-based learning in a first-year chemical engineering course: Evaporative Cooling Abstract

The challenges of engaging first-year engineering students are well known. Many students come to an engineering curriculum poorly prepared and with substantial misunderstanding of what engineers actually do. Too frequently, recent high-school graduates are unprepared to make the commitment to do the hard work required to complete their degree in four years. Some students who might otherwise become successful engineers change their major to one that has more immediate appeal, is an easier pathway to graduation, or is taught by instructors who address the students' preferred learning styles directly.

At engineering colleges around the country, many inventive programs have recently begun to address these issues1,2. Along with recognition that the traditional lecture-based format is far from ideal, many programs and departments have created innovative problem-based- learning first-year courses3,4. The perception is that giving students the opportunity to design, build, and test a "widget" will engage them more fully, motivate them to study harder, make a more educated choice of major, and commit to the major. Students whose preferred learning style requires active, hands-on activity discover that engineering may suit them well, in contrast to what they may have concluded from lecture-based courses.

This paper is a report on one such effort at the University of Nevada, Reno, funded by the Hewlett Foundation. A new course has been developed in chemical engineering with a green- engineering theme, and uses a project as a vehicle to learn teamwork, to practice engineering design, measurements, and graphical data representation. We also address academic study skills and use Felder's Index of Learning Styles (ILS) to enable students to be aware explicitly of their own learning style.

The project is to design, build, and test an evaporative cooler, and is conducted in teams of 3 or 4 students, that endure for the semester. Assessment criteria include evaporative cooler performance, cost, safety, and style. Safety is given prominent focus repeatedly throughout the semester. Students learn how to use a psychrometric chart and apply it to rate the performance of their cooler. The nature of measurements is discussed. Teamwork skills, including problem solving, are addressed. Students practice engineering design in a formal manner, with several repetitions of design versus performance, safety audits, and cost playing important roles.

The class incorporates several teaching methods, to target learners of all types. Sensors benefit directly from the project, and seeing the results of their work, while intuitive learners do well with the performance calculations, and also with the varied engineering calculations included in the text by Solen and Harb5. Visual learners do well with the psychrometric chart and the design diagrams, while verbal learners gain from the classroom discussions and from the book reading. Active learners especially benefit from the incorporation of this project, since it requires hands-on building in a group. Reflective learners profit from writing the reports and completing the homework assignments. Both inductive and deductive learning styles are

Coronella, C. (2006, June), Project Based Learning In A First Year Chemical Engineering Course: Evaporative Cooling Paper presented at 2006 Annual Conference & Exposition, Chicago, Illinois. https://peer.asee.org/850

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2006 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015