Salt Lake City, Utah
June 23, 2018
June 23, 2018
July 27, 2018
Educational Research and Methods
17
10.18260/1-2--30966
https://peer.asee.org/30966
515
Aditya Johri is Associate Professor in the department of Information Sciences & Technology. Dr. Johri studies the use of information and communication technologies (ICT) for learning and knowledge sharing, with a focus on cognition in informal environments. He also examine the role of ICT in supporting distributed work among globally dispersed workers and in furthering social development in emerging economies. He received the U.S. National Science Foundation’s Early Career Award in 2009. He is co-editor of the Cambridge Handbook of Engineering Education Research (CHEER) published by Cambridge University Press, New York, NY. Dr. Johri earned his Ph.D. in Learning Sciences and Technology Design at Stanford University and a B.Eng. in Mechanical Engineering at Delhi College of Engineering.
Aqdas Malik is a Postdoctoral Research Fellow at the Department of Information Sciences and Technology, George Mason University. His multidisciplinary academic and industry experience spans two key disciplines: Human-Computer Interaction and Social Media Communication and Analytics. He is currently engaged in a number of research projects funded by the National Science Foundation (NSF). In some of his recent projects he has applied big data techniques and tools to investigate the role of social media in engaging public and under-represented communities towards STEM education and informal learning.
Workforce development in engineering is a high priority to keep pace with innovation and change within engineering disciplines and also within organizations. Increasingly, workforce development requires more retraining and retooling of employees than ever before as information technology has accelerated both the creation of a new body of knowledge and also the skills required to perform the work. In this paper we present a field study of a highly dynamic workplace – a cybersecurity firm – undertaken to better understand how engineers keep up with the pace of knowledge that is needed for their work. Fifteen professionals, with a wide range of experience and educational background, were interviewed. Data were analyzed iteratively and interpretively. The findings from the study suggest that over time some well-defined ways of learning had developed in the workplace we studied. These learning practices combined in-person and online interactions and resources. We also found that learning was triggered largely by the need to solve a problem or by the interests of the engineers to learn more in order to be prepared for new knowledge in the field. Depending on the problem they faced, the engineers mapped the requirements of what was needed to solve the problem, identified the resources that were available, and then selected the optimal resource. Often, as is common with problem solving, our participants had to try out multiple options. Theoretically, our study contributes by integrating an information seeking perspective with situated cognition to inform future studies of learning in information rich engineering and technology workplaces.
Le, H., & Johri, A., & Malik, A. (2018, June), Situated Information Seeking for Learning: A Case Study of Engineering Workplace Cognition among Cybersecurity Professionals Paper presented at 2018 ASEE Annual Conference & Exposition , Salt Lake City, Utah. 10.18260/1-2--30966
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2018 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015