Asee peer logo

Structure of a Human-Centered and Societal-Based First-Year Maker Space Design Course

Download Paper |

Conference

2020 ASEE Virtual Annual Conference Content Access

Location

Virtual On line

Publication Date

June 22, 2020

Start Date

June 22, 2020

End Date

June 26, 2021

Conference Session

Empathy and Human-Centered Design 1

Tagged Division

Design in Engineering Education

Tagged Topic

Diversity

Page Count

17

DOI

10.18260/1-2--35215

Permanent URL

https://peer.asee.org/35215

Download Count

148

Request a correction

Paper Authors

biography

Pamela L Dickrell University of Florida

visit author page

Dr. Pamela Dickrell is the Associate Chair for Academics of the Department of Engineering Education, in the UF Herbert Wertheim College of Engineering. Her role focuses on effective teaching methods and hands-on learning opportunities for undergraduate student engagement and retention. Dr. Dickrell received her B.S., M.S., and Ph.D. in Mechanical Engineering from the University of Florida, specializing in Tribology.

visit author page

biography

Lilianny Virguez University of Florida

visit author page

Lilianny Virguez is a Lecturer at the Department of Engineering Education at University of Florida. She holds a Masters' degree in Management Systems Engineering and a Ph.D. in Engineering Education from Virginia Tech. She has work experience in engineering and has taught engineering courses at the first-year level.Her research interests include motivation to succeed in engineering with a focus on first-year students.

visit author page

biography

Andrea Goncher University of Florida

visit author page

Andrea Goncher is a Lecturer in Engineering Education at the University of Florida. She earned her PhD in Engineering Education from Virginia Tech and focuses on teaching and learning projects in Human Centred Design. Her research interests include text analytics, international higher education, and engineering design education.

visit author page

Download Paper |

Abstract

This complete curricular practice work shows the full learning module mapping, makerspace classroom structure, and pre- and post- student maker skills confidence survey from a human-centered first-year multidisciplinary design course. “Engineering Design and Society” is a first-year course created for students of all engineering majors to understand larger impact they can make in serving society through practicing human-centered design. Students learn the importance of human-centered design, practice fundamental makerspace hands-on skills (hand & power tools, solid modeling, 3D printing, Arduino based sensors and actuators, programming, etc.), and collaborate in multidisciplinary teams to research, design, build, test, document, and present on their human-centered functional prototype. The integration of human-centered design and end-users as part of first-year design experience is important for promoting student interest and retention within engineering. Characteristics that differentiate “Engineering Design and Society” as a novel first year course include the importance placed on human-centered design for first-year students. First-year engineering design courses in the last couple of decades have been designed as project-based and hands-on. First-year projects differ across universities, but typical projects can include a focus on designing and building prototypes, working in teams, full- and small-scale projects, case-study analysis, reverse engineering, and the integration of engineering, math, and science courses. The course described in this paper builds on the effective components of project-based, hands-on first-year design projects, and uses the human centered design process to frame an approach where students are encouraged to incorporate the user, environment, and ethical considerations throughout the process. The course has capacity for over 1,600 students annually at a large public land-grant university, providing meaningful individual hands-on makerspace skills to each student, and physical functional prototype creation using 3D printing and Arduino-based engineering sensors & actuators (not just modeling or computer simulation of designs).

Balanced delivery of course characteristics is achieved through optimizing three student engagement methods: a) active learning through a makerspace classroom, b) utilization of undergraduate peer mentors for student support, and c) self-directed student learning through online module delivery. This complete work breaks the course into 15 modules and for each module, maps out the taxonomy-based learning objectives, self-directed content, makerspace content, and assessments that check those learning objectives in support of the overall course goals. This work is structured in a manner to provide enough module detail and flexibility to facilitate other universities that wish to establish human-centered based first-year courses to serve the needs and culture of their own student populations.

Dickrell, P. L., & Virguez, L., & Goncher, A. (2020, June), Structure of a Human-Centered and Societal-Based First-Year Maker Space Design Course Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . 10.18260/1-2--35215

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2020 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015