Asee peer logo

The Effectiveness of Dimples on a NACA Airfoil: A Numerical Investigation Conducted via an Independent Study

Download Paper |


2021 ASEE Virtual Annual Conference Content Access


Virtual Conference

Publication Date

July 26, 2021

Start Date

July 26, 2021

End Date

July 19, 2022

Conference Session

Potpourri - A Mix of All Topics

Tagged Division

Mechanical Engineering

Tagged Topic


Page Count


Permanent URL

Download Count


Request a correction

Paper Authors


Jenna Elizabeth Stolzman Grand Valley State University

visit author page

Jenna Stolzman is a senior mechanical engineering undergraduate student at Grand Valley State University. She will begin her Ph.D. in mechanical engineering at University of Michigan in fall 2021. She also serves on the leadership committee for GVSU's chapters of American Society of Mechanical Engineers and Society of Women Engineers.

visit author page


Sanjivan Manoharan Grand Valley State University

visit author page

Sanjivan Manoharan is an Assistant Professor at the School of Engineering at Grand Valley State University. He received his BSE and MSE degrees in Aerospace Engineering at Embry-Riddle Aeronautical University and his Ph.D. in Mechanical Engineering at the University of Cincinnati. His research interests are in the thermo-fluids area and also focuses on promoting graduate education among undergraduate students via research collaborations.

visit author page

Download Paper |


This paper integrates research and education in an effort to enhance the critical thinking skills of an undergraduate Mechanical Engineering student while also promoting graduate engineering education. To achieve this, a three-credit undergraduate independent study was conducted where the research topic of interest was mitigating boundary layer separation, a topic covered in the undergraduate Fluid Mechanics course. Delaying boundary layer separation to improve airfoil aerodynamic performance can be achieved by passive techniques which include the use of vortex generators, rough patches, uniform suction/blowing, and dimpled surfaces. Dimpled surfaces have been known to generate swirl by the creation of vortices thereby energizing the flow. It is believed that the generation of vortices and swirl can be used to mitigate boundary layer separation thus improving lift, reducing drag, and delaying stall for an airfoil. Dimples were chosen since conflicting observations exist in the literature, and this would be a good challenge for the student. This paper numerically investigates the effectiveness of dimples on a NACA 4414 airfoil while also addressing the conflicting observations available in literature and the thought process of the student. First, an extensive literature review was conducted by the student to observe the use of dimpled surfaces with respect to airfoils. The various configurations pertaining to a single dimple shape, size, and axial location and their efficacy were considered. Following this, the NACA 4414 airfoil was numerically analyzed using the Computational Fluid Dynamics software, ANSYS FLUENT. Parametric studies were then conducted to determine the optimal configuration of a single dimple and multiple dimples. At this stage, the student conducted the investigation independently without any guidance from the instructor. Different geometrical shapes, sizes, placement along the airfoil, and multiple arrangements were all considered. The designs were driven by fundamental fluid mechanics principles that were applied by the student. This forced the student to think outside of the box and develop critical thinking ability. The project was a challenge for the student as the findings were in direct contrast with many other researchers. While reporting the results is important, of equal importance is the understanding and articulating the physics behind the flow behavior. Through this independent study, the student contributed to the gaps in knowledge, enhanced the critical thinking ability, learned how to conduct thorough literature review and improve technical writing skills. The student’s academic growth via this study was remarkable, and the student was highly appreciative of the various lessons learned while also deciding to take on more research by pursuing graduate education.

Stolzman, J. E., & Manoharan, S. (2021, July), The Effectiveness of Dimples on a NACA Airfoil: A Numerical Investigation Conducted via an Independent Study Paper presented at 2021 ASEE Virtual Annual Conference Content Access, Virtual Conference.

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2021 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015