Asee peer logo

Toward a Comprehensive Online Transfer Engineering Curriculum: Assessing the Effectiveness of an Online Engineering Circuits Laboratory Course

Download Paper |

Conference

2016 ASEE Annual Conference & Exposition

Location

New Orleans, Louisiana

Publication Date

June 26, 2016

Start Date

June 26, 2016

End Date

June 29, 2016

ISBN

978-0-692-68565-5

ISSN

2153-5965

Conference Session

Curriculum Development in Two-Year Engineering and Engineering Technology Programs

Tagged Division

Two Year College Division

Page Count

13

DOI

10.18260/p.27053

Permanent URL

https://peer.asee.org/27053

Download Count

443

Request a correction

Paper Authors

biography

Thomas Rebold Monterey Peninsula College Orcid 16x16 orcid.org/0000-0003-4346-6938

visit author page

Tom Rebold has chaired the Engineering department at Monterey Peninsula College since 2004. He holds a bachelor’s and master’s degree in electrical engineering from MIT, and has been teaching online engineering classes since attending the Summer Engineering Teaching Institute at Cañada College in 2012.

visit author page

biography

Amelito G Enriquez Canada College Orcid 16x16 orcid.org/0000-0002-1259-0680

visit author page

Amelito Enriquez is a professor of Engineering and Mathematics at Cañada College in Redwood City, CA. He received a BS in Geodetic Engineering from the University of the Philippines, his MS in Geodetic Science from the Ohio State University, and his PhD in Mechanical Engineering from the University of California, Irvine. His research interests include technology-enhanced instruction and increasing the representation of female, minority and other underrepresented groups in mathematics, science and engineering.

visit author page

biography

Erik N Dunmire College of Marin

visit author page

Erik Dunmire is a professor of engineering and chemistry at College of Marin. He received his Ph.D. in Chemical Engineering from University of California, Davis. His research interests include broadening access to and improving success in lower-division STEM education.

visit author page

biography

Nicholas P. Langhoff Skyline College

visit author page

Nicholas Langhoff is an associate professor of engineering and computer science at Skyline College in San Bruno, California. He is also a co-investigator for multiple grant projects at Cañada College in Redwood City, California. He received his M.S. degree from San Francisco State University in embedded electrical engineering and computer systems. His research interests include technology-enhanced instruction, online engineering education, metacognitive teaching and learning strategies, reading apprenticeship in STEM, and the development of novel instructional equipment and curricula for enhancing academic success in science and engineering.

visit author page

Download Paper |

Abstract

Community college engineering transfer programs prepare a significant fraction of the graduates from university engineering programs, yet face challenges from a fragmented lower division engineering core curriculum, limited scheduling options for students, and sometimes marginal enrollment patterns. In addition, most small college programs are run by one permanent faculty, making it difficult to provide lower-division engineering courses with the breadth and frequency needed for effective and timely transfer preparation. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses. These courses can be delivered either completely online, or with limited face-to-face interactions. This paper presents the development and testing of the teaching and learning resources for an online Engineering Circuits Laboratory class, a one-unit laboratory course offered alongside the circuit theory course, which is already available in an online format. The class materials cover the use of basic instrumentation (DMM, Oscilloscope), analysis and interpretation of experimental data, circuit simulation, use of MATLAB to solve circuit equations in the real and complex domain, and exposure to the Arduino microcontroller. A systems approach to selected topics is also introduced as a way to contextualize student exposure to the material. The paper presents the results of the pilot and a second implementation of the curriculum, as well as a comparison of the outcomes of the online course with those from a regular, face-to-face course. Additionally, student surveys and interviews are used to determine student perceptions of the course resources, student use of these resources, and overall satisfaction with the course.

Rebold, T., & Enriquez, A. G., & Dunmire, E. N., & Langhoff, N. P. (2016, June), Toward a Comprehensive Online Transfer Engineering Curriculum: Assessing the Effectiveness of an Online Engineering Circuits Laboratory Course Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.27053

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015