Tampa, Florida
June 15, 2019
June 15, 2019
June 19, 2019
Hands-On Activities and Student Learning in Aerospace Engineering - I - Student Papers
Aerospace
Diversity
14
10.18260/1-2--33469
https://peer.asee.org/33469
554
Hannah Stroud is a first year masters student at Texas A&M University. Her research interests include unconventional applications of aerospace technology with an emphasis on smart materials and structural optimization. She is co-advised by Dr. Kristi Shryock and Dr. Darren Hartl.
Dr. Kristi J. Shryock is the Frank and Jean Raymond Foundation Inc. Endowed Instructional Associate Professor and Associate Department Head in the Department of Aerospace Engineering in the College of Engineering at Texas A&M University. She also serves as Director of the Craig and Galen Brown Engineering Honors Program. She received her BS, MS, and PhD from the College of Engineering at Texas A&M. Kristi works to improve the undergraduate engineering experience through evaluating preparation in areas, such as mathematics and physics, evaluating engineering identity and its impact on retention, incorporating non-traditional teaching methods into the classroom, and engaging her students with interactive methods.
Darren J. Hartl received his BS in Aerospace Engineering in 2004 and Ph.D. in Aerospace Engineering in 2009, both from Texas A&M University. He currently holds an Assistant Professor position at Texas A&M in his home department, and his work bridges the topics of advanced multifunctional material systems and their integration into aerospace platforms. After over three years as a Research Assistant Professor at Texas A&M, Dr. Hartl accepted joint appointments working at the Air Force Research Laboratory (AFRL) in the Materials and Manufacturing Directorate and Aerospace Systems Directorate. At Texas A&M, Dr. Hartl maintains a large and active research team consisting of graduate, undergraduate, and postdoctoral researchers. Darren has over 17 years of experience working with shape memory alloys and morphing structures and his efforts have included both experimental and theoretical studies. Since 2006, Darren has co-authored 158 technical publications on the topics of active materials modeling, testing, and integration into morphing structures. He has given over 25 invited talks or seminars (10 international) and has taught short courses on SMA theories in the US, Europe, and Asia. Since 2014, he has served as an Associate Editor for the Journal of Intelligent Material Systems and Structures. He was recently selected as the 2016 recipient of the ASME Gary Anderson Early Achievement Award for his contributions to the smart materials and adaptive structures communities.
Isaac Sabat's program of research broadly focuses on understanding and improving the working lives of stigmatized employees. He is particularly interested in examining strategies in which these employees can engage, such as disclosing or acknowledging their identities, to effectively remediate the workplace obstacles that they face. He has conducted various interrelated projects that examine how the effectiveness of expressing one’s identity is impacted by the extent to which stigmas are previously known, visible, or discovered by others over time. This is a novel area, given that disclosures have previously been conceptualized as a dichotomous, all-or-nothing phenomenon. This work has been published in Journal of Business and Psychology, Journal of Organizational Behavior, Journal of Vocational Behavior, and Harvard Business Review.
Kelly K. Dray is a Ph.D. student in Industrial/Organizational Psychology at Texas A&M University. Her research interests include (1) how various stigmatized identities relate to occupational health outcomes and (2) best conflict management and confrontation techniques to use within organizations.
Student Paper
Having a diverse base of highly talented students and preparing them for the 21st century workforce is a national priority that affects U.S. innovation and competitiveness. Increasing the number and diversity of STEM graduates is important to our country’s continued economic growth and is an area of national interest as this need continues to increase. In addition to the number of STEM graduates is the need for graduates to work effectively on teams. Diversity within engineering groups has been shown to positively impact a team’s body of knowledge on a given topic, as well as improve that group’s creativity, ethical decision-making, and ability to function as a cohesive unit. Aerospace engineering is a unique case study in that traditional methods of attracting more students from increasingly diverse backgrounds have been less effective than in other STEM fields, and average percentages for minority groups in aerospace are historically lower than other engineering groups. Often times, prospective students attribute their disinterest in aerospace to a narrow focus of the field or limited job opportunities. The NSF XXX project at Institution seeks to expand diversity and inclusion within the aerospace engineering department through increasing visibility of non-traditional applications of fundamental aerospace concepts. As part of this effort, a new senior-level design elective, AERO XXX: Unconventional Applications for Aerospace Skills, has been introduced. In this course, students explore non-traditional design spaces, i.e. areas that are not perceived as typically aerospace, and how fundamental structures, fluids, and dynamics apply in these areas. The goal of the class is to encourage students to draw correlations between their field and fields they previously viewed as unrelated. The class began by introducing areas in which aerospace fundamentals were highly used and encouraging students to view aerospace from a “strengths” perspective, rather than an “end use” perspective. For example, to highlight civil and environmental engineering students completed an activity to “save the pelicans” from dangerous crosswinds over a causeway. Students developed a dynamical model for a mandible for an experience in biomedical engineering and modeled the power output and structural integrity of wind turbines for a renewable energy focus. The major component of the class, however, is a final project in which students must use the knowledge and software taught in previous courses in their aerospace curriculum to design and model either a directed flow inhaler, a smart tourniquet, or a stent deployment system. All three projects were selected based on their relevance to fluids, structures, and dynamics, as well as their distinct separation from traditional aerospace problems. The paper will discuss results from the semester-long course, including student feedback, ability of the students to apply their fundamental knowledge to areas outside of the traditional aerospace domain, and the ability of students to use this knowledge in their career choice selection.
Stroud, H. R., & Shryock, K. J., & Hartl, D. J., & Sabat, I. E., & Dray, K. K. (2019, June), Unconventional Applications of Aerospace Engineering: Effects of a Design Elective on Perception of Aerospace Paper presented at 2019 ASEE Annual Conference & Exposition , Tampa, Florida. 10.18260/1-2--33469
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2019 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015