Virtual Conference
July 26, 2021
July 26, 2021
July 19, 2022
NSF Grantees Poster Session
10
10.18260/1-2--37953
https://peer.asee.org/37953
278
Sean St.Clair is a Professor of Civil Engineering at Oregon Tech, where he teaches structural engineering courses and conducts research in engineering education. He is also a registered Professional Engineer.
Dr. Dave Kim is Professor and Mechanical Engineering Program Coordinator in the School of Engineering and Computer Science at Washington State University Vancouver. His teaching and research have been in the areas of engineering materials, fracture mechanics, and manufacturing processes. In particular, he has been very active in pedagogical research in the area of writing pedagogy of engineering laboratory courses. Dr. Kim and his collaborators attracted close to $1M research grants to study writing transfer of engineering undergraduates. For the technical research, he has a long-standing involvement in research concerned with manufacturing of advanced composite materials (CFRP/titanium stack, GFRP, nanocomposites, etc.) for automotive, marine, and aerospace applications. His recent research efforts have also included the fatigue behavior of manufactured products, with the focus of fatigue strength improvement of aerospace, automotive, and rail structures. He has been the author or co-author of over 200 peer-reviewed papers in these areas.
Dr. Riley has been teaching civil engineering structures and mechanics concepts for over 12 years and has been honored with both the ASCE ExCEEd New Faculty Excellence in Civil Engineering Education Award and the Beer and Johnston Outstanding New Mechanics Educator Award. While he teaches freshman to graduate-level courses across the civil engineering curriculum, his focus is on engineering mechanics. He values classroom demonstrations and illustrative laboratory and field experiences. He has served as an ASCE ExCEEd Teaching Workshop mentor for five years as well as the founding coordinator for the Oregon Tech Excellence in Teaching Workshop.
Engineering undergraduates’ academic writing experiences prior to entry-level engineering lab courses can be classified into three different groups: a group with both rhetorically-focused writing (e.g., first-year-composition) and technical writing courses; a group with only rhetorically-focused writing courses; and a group with no rhetorically-focused writing or technical writing courses. Using a lens of transfer theories that explain how much knowledge from one context is used or adapted in new contexts, these three groups can be called concurrent, vertical, and absent transfer groups respectively. This study, which is part of a larger project developing and implementing writing-focused modules in engineering labs, aims to investigate undergraduates’ perspectives on readiness, writing transfer, and effectiveness of writing instructions in engineering lab report writing through a student survey. End-of-term online surveys (n = 40) of undergraduates in entry-level engineering lab courses were collected from three distinctive universities: an urban, commuter, public research university; an urban, private, teaching-focused university; and a rural, public, teaching-focused university.
The survey questions have three parts: 1) student perspectives in writing in engineering disciplines; 2) how students use prior writing knowledge when writing lab reports in engineering lab courses; and 3) how engineering lab course writing instructions impact students’ engineering lab report writing. Findings suggest that the three transfer groups present statistical distinctions on the readiness of writing engineering lab reports (concurrent group as the highest and absent group as the lowest). The three groups also show different perspectives on how their freshmen writing courses contributed their engineering lab report writing. The concurrent transfer group believed freshmen writing instruction regarding “focus on purpose” contributed most when they write lab reports, while the greatest number of vertical transfer group students mentioned “knowledge about format and structure” was most helpful. Many absent transfer students valued “identifying problems or questions” instructed from their freshmen writing-intensive philosophy course as the content they used most when writing lab reports. Ultimately, the analysis of the data suggested that despite their perceived preparedness for writing lab reports, most of the students felt their skills improved as a result of engaging in lab report writing activities.
St. Clair, S., & Kim, D., & Riley, C. (2021, July), Undergraduates' Perspectives on Readiness, Writing Transfer, and Effectiveness of Writing Instructions in Engineering Lab Report Writing Paper presented at 2021 ASEE Virtual Annual Conference Content Access, Virtual Conference. 10.18260/1-2--37953
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2021 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015