Asee peer logo

Utilizing an Individually Built Mobile Robot in the Laboratory of an Advanced Digital Logic Design Course in Conjunction with a Final Class Competition

Download Paper |

Conference

2019 ASEE Annual Conference & Exposition

Location

Tampa, Florida

Publication Date

June 15, 2019

Start Date

June 15, 2019

End Date

June 19, 2019

Conference Session

Insights for Teaching ECE Courses - Session I

Tagged Division

Electrical and Computer

Tagged Topic

Diversity

Page Count

18

DOI

10.18260/1-2--33526

Permanent URL

https://peer.asee.org/33526

Download Count

350

Request a correction

Paper Authors

biography

Clint Kohl Cedarville University

visit author page

Dr. Kohl joined the faculty of Cedarville University in the fall of 1994. His graduate research involved the development of a new magneto-resistive non-volatile memory technology. His areas of interest include digital electronics, microcontrollers, programmable logic devices, and embedded systems. He has enjoyed advising numerous autonomous robotic competition teams. Dr. Kohl is a member of the Institute of Electrical and Electronics Engineers and the American Society of Engineering Educators.
Ph.D., Iowa State University
M.S.E.E., University of North Dakota
B.S.E.E., South Dakota State University

visit author page

Download Paper |

Abstract

This paper describes the development and implementation of a series of laboratory projects utilized in a junior level, required course for computer engineering majors titled, “Advanced Digital Logic Design.” Eleven of the 13 lab experiences are directly related to this project.

The first five labs are mainly construction labs where students are developing practical hands-on skills and gaining familiarity with common prototyping practices. These skills include (a) utilizing a 3-D printer in order to create the chassis, wheels, and sensor mounts, (b) disassembly, modification, and reassembly of two servo motors, and (c) assembly and soldering two custom-designed printed circuit boards (PCB) totaling approximately 50 components and 200 solder points. Once the all the subsystems are complete, then they are screwed together, along with a battery pack and front contact sensing bumper.

In the final six labs, the students systematically build-up the various digital designs needed in order to autonomously control their individually built mobile robot. These labs include digital designs (a) to control the servos, (b) to play an accurate song on a small speaker, (c) to communicate with five infrared (IR) distance sensors in order to obtain range information, (d) to create a complex finite state machine (FSM), and (e) to control the overall behavior of the robot. A 240 logic cell Complex Programmable Logic Device (CPLD) limits each student’s design space and, consequently, efficiency of implementations is enforced. Milestones are graded throughout the semester in order to encourage proper progress toward the goal of participating in the final class competition; this event is where guests are invited and small prizes are awarded for the top three finishers. This style of project-based-learning provides students with opportunities to gain practical skills and, with these skills, to increase confidence in their abilities to design and solve real-world problems. Additionally, I have found student motivation and interest to be high, which leads to increased rates of learning and accomplishment. Since the cost of the components is kept low (approximately $60), each student retains his/her respective robot and can continue working with it beyond the completion of the course.

Kohl, C. (2019, June), Utilizing an Individually Built Mobile Robot in the Laboratory of an Advanced Digital Logic Design Course in Conjunction with a Final Class Competition Paper presented at 2019 ASEE Annual Conference & Exposition , Tampa, Florida. 10.18260/1-2--33526

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2019 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015