Virtual Conference
July 26, 2021
July 26, 2021
July 19, 2022
Chemical Engineering
5
10.18260/1-2--38183
https://peer.asee.org/38183
278
Kitana Kaiphanliam is a doctoral candidate in the Voiland School of Chemical Engineering and Bioengineering at Washington State University (WSU). Her research focuses include miniaturized, hands-on learning modules for engineering education and bioreactor design for T cell manufacturing. She has been working with Prof. Bernard Van Wie on the Educating Diverse Undergraduate Communities with Affordable Transport Equipment (EDUC-ATE) project since Fall of 2017.
Second year Chemical Engineering doctoral student pursuing research on the development and dissemination of low-cost, hands-on learning modules displaying heat and mass transfer concepts in a highly visual, interactive format. Graduated from Washington State University with a B.S. degree in Chemical Engineering in 2017 and M.S. degree in Chemical Engineering in 2019 with work related to potentiometric biosensing.
Olufunso Oje is a Masters student in the Educational Psychology program at Washington State University. His research interests include learning strategies in engineering education and multimedia learning. He has a Bachelor’s degree in Electrical Engineering and a deep background in computing and software programming.
Dr. Olusola O. Adesope is a Professor of Educational Psychology and a Boeing Distinguished Professor of STEM Education at Washington State University, Pullman. His research is at the intersection of educational psychology, learning sciences, and instructional design and technology. His recent research focuses on the cognitive and pedagogical underpinnings of learning with computer-based multimedia resources; knowledge representation through interactive concept maps; meta-analysis of empirical research, and investigation of instructional principles and assessments in STEM. He is currently a Senior Associate Editor of the Journal of Engineering Education.
Prof. Bernard J. Van Wie received his B.S., M.S. and Ph.D., and did his postdoctoral work at the University of Oklahoma where he also taught as a visiting lecturer. He has been on the Washington State University (WSU) faculty for ~37 years and for the past 23 years has focused on innovative pedagogy research and technical research in biotechnology. His 2007-2008 Fulbright exchange to Nigeria set the stage for him to receive the Marian Smith Award given annually to the most innovative teacher at WSU. He was also the recipient of the inaugural 2016 Innovation in Teaching Award given to one WSU faculty member per year.
Chemical engineering students learn valuable fundamentals that can be used to enhance the medical field, yet the lack of emphasis on such applications can misguide undergraduate students as they choose their major. To address this misconception, we propose the use of a hands-on, interactive learning tool to expose freshman-level chemical engineering undergraduate students to applications that go beyond the traditional oil refining and catalysis emphases typically discussed in the introductory “Applications in Chemical Engineering” course. We developed a low-cost, modified fidget spinner that introduces students to blood separation principles. On each arm of the spinner, there exists a see-through chamber filled with fluid and microbeads at various ratios, which simulates the effect of hematocrit, or red blood cell fraction, on settling velocities and terminal position—phenomena that are utilized to enhance blood separation efficiencies. Due to COVID-19, we plan to implement this device by mailing fidget spinner kits with a complementary worksheet to the students to conduct observational experiments at home in the spring 2021 semester. We hypothesize that introducing biomedical applications early in the undergraduate experience will help students understand that chemical engineering knowledge can easily be transferred to biological systems and will have a significant impact on motivation and retention of women in the cohort. Motivational surveys will be used to assess pre- and post-implementation attitudes toward chemical engineering as a major and will be compared to control data collected in fall 2020. In the paper and presentation, we will also share the mathematical modeling behind creating the microbead blood simulant. We plan to conclude the paper and presentation with theoretical and practical implications of our findings.
Kaiphanliam, K., & Reynolds, O., & Oje, O., & Adesope, O., & Van Wie, B. J. (2021, July), Work in Progress: Modeling the Effect of Hematocrit on Blood Cell Separations Using a Hands-on Learning Device and Microbead Blood Simulant Paper presented at 2021 ASEE Virtual Annual Conference Content Access, Virtual Conference. 10.18260/1-2--38183
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2021 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015