Virtual On line
June 22, 2020
June 22, 2020
June 26, 2021
Engineering Technology
11
10.18260/1-2--35709
https://peer.asee.org/35709
479
Assistant Professor, Engineering Technology, Wayne State University, 2015-present.
Ph.D 2006 Texas A&M University.
GENE LIAO is currently Director of the Electric-drive Vehicle Engineering and Alternative Energy Technology programs and Professor at Wayne State University. He received a M.S. in mechanical engineering from Columbia University, and a doctor of engineering from University of Michigan, Ann Arbor. He has over 17 years of industrial practices in the automotive sector prior to becoming a faculty member. Dr. Liao has research and teaching interests in the areas of hybrid vehicles, energy storage, and advanced manufacturing.
Roger C. Lo is Associate Professor of Chemical Engineering at California State University, Long Beach. He received his Ph.D. from Texas A&M University in May 2008. Roger teaches undergraduate and graduate required courses (fluids, mathematics, and transport phenomena) and also numerical analysis using Excel and MATLAB for chemical engineering calculations. Roger's research interest focuses on microfluidics and its applications to solving chemical and biological problems, such as fuel cells, microreactors, and high-throughput chemical/biological assays.
Dr. Praveen Shankar is an Associate Professor in the Department of Mechanical and Aerospace Engineering at California State University, Long Beach. Dr. Shankar's research expertise is in the analysis and design of control systems for complex dynamic systems. He serves as the director the Collaborative Autonomous Systems Laboratory at CSULB which focuses on the development and testing of advanced motion planning and control technologies for autonomous robotic systems.
The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and in aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics.
The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronics as well. These new teaching tools include affordable microcontrollers and the peripherals such as Arduinos, and Raspberry Pi, desktop 3D printers, and virtual reality (VR).
In this paper we present the working processes and activities of a current one-year ECR project funded by NSF organizing two workshops held by two institutes for improving workforce development environments specified in mechatronics. Each workshop is planned to be two days, where the first day will be dedicated to the topics of the current workforce situation in industry, the current pathways for workforces, conventional college and university workforce training, and K-12 STEM education preparation in mechatronics. The topics in the second day will be slightly different based on the expertise and locations of the two institutes. One will focus on the mechatronics technologies in production engineering for alternative energy and ground mobility, and the other will concentrate on aerospace, alternative energy, and the corresponding applications. Both workshops will also address the current technical development of teaching methods and tools for mechatronics. VR will be specially emphasized and demonstrated in the workshops if the facilities allow. Social impacts of mechatronics technology, expansion of diversity and participation of underrepresented groups will be discussed in the workshops. We expect to have the results of the workshops to present in the annual ASEE conference in June.
Chen, J. C., & Liao, G. Y., & Lo, R. C., & Shankar, P. (2020, June), Workshop development for New frontier of mechatronics for mobility, energy, and production engineering Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . 10.18260/1-2--35709
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2020 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015