Asee peer logo

The Role Of The Kinetic Diagram In The Teaching Of Introductory Rigid Body Dynamics Past, Present, And Future

Download Paper |

Conference

2002 Annual Conference

Location

Montreal, Canada

Publication Date

June 16, 2002

Start Date

June 16, 2002

End Date

June 19, 2002

ISSN

2153-5965

Conference Session

Trends in Mechanics Education

Page Count

11

Page Numbers

7.1182.1 - 7.1182.11

DOI

10.18260/1-2--10358

Permanent URL

https://peer.asee.org/10358

Download Count

4194

Paper Authors

author page

L. Glenn Kraige

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Main Menu

Session 2268

The Role of the Kinetic Diagram in the Teaching of Introductory Rigid-Body Dynamics – Past, Present, and Future Glenn Kraige Department of Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, VA 24061 USA

Abstract

The introductory engineering dynamics course is widely regarded as one of the most difficult courses that the undergraduate engineering student takes. Further, the rigid-body area of this dynamics course is considered much more difficult than the particle area. One reason for the latter statement is that we have not yet progressed to the best steady-state teaching strategy in the area of rigid-body kinetics. The purpose of this paper is to review the history and current state of affairs in this narrow area and then to advocate a better strategy. Recommendations are made in regard to both diagrams and corresponding equations of motion.

Introduction

Dynamics did not become a significant issue until the beginning of the machine age. Mechanicists were accustomed to a zero on the right-hand side of the governing equations in statics, so the first direction of particle dynamics was to include a -ma term on the left side of dynamics equations so that the right-hand zero could be retained. Although sometimes referred to as D’Alembert’s Principle, this technique should be called dynamic equilibrium (D’Alembert’s Principle is a virtual-work principle). This -ma term has been called an inertia force, an effective force, a reversed effective force, etc. The technical community eventually took the position that dynamics should not be treated as a special case of statics, but rather the other way around. In other words, we soon placed the ma term on the right side of the equations of motion and included only real (contact and body) forces on the left side. Some textbooks went through a period in which a kinetic diagram (sometimes called a resultant-force diagram) was drawn (in addition to the free-body diagram (FBD)). This diagram merely showed an ma vector (or its components). The usual arrangement was to draw the FBD and then write an equal sign with the kinetic diagram (KD) to the right. Such practice seems to have been largely terminated for particle dynamics.

It is the author’s position that, with the conventional teaching of particle dynamics as outlined above, we are in the steady-state, terminal teaching configuration. We note that the teaching of particle statics and particle dynamics is now of identical format. There is the same type of FBD showing only real forces, followed by application of governing equations. The only difference is that, for particle dynamics, the right-hand sides of the governing equations are not zero.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition Copyright © 2002, American Society for Engineering Education

Main Menu

Kraige, L. G. (2002, June), The Role Of The Kinetic Diagram In The Teaching Of Introductory Rigid Body Dynamics Past, Present, And Future Paper presented at 2002 Annual Conference, Montreal, Canada. 10.18260/1-2--10358

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2002 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015