New Orleans, Louisiana
June 26, 2016
June 26, 2016
June 29, 2016
978-0-692-68565-5
2153-5965
Energy Conversion and Conservation
10
10.18260/p.26783
https://peer.asee.org/26783
908
Dr. Radian Belu is Associate Professor within Electrical Engineering Department, University of Alaska Anchorage, USA. He is holding one PhD in power engineering and other one in physics. Before joining to University of Alaska Anchorage Dr. Belu hold faculty, research and industry positions at universities and research institutes in Romania, Canada and United States. He also worked for several years in industry as project manager, senior engineer and consultant. He has taught and developed undergraduate and graduate courses in power electronics, power systems, renewable energy, smart grids, control, electric machines, instrumentation, radar and remote sensing, numerical methods, space and atmosphere physics, and applied physics. His research interests included power system stability, control and protection, renewable energy system analysis, assessment and design, smart microgrids, power electronics and electric machines for non-conventional energy conversion, remote sensing, wave and turbulence, numerical modeling, electromagnetic compatibility and engineering education. During his career Dr. Belu published ten book chapters, several papers in referred journals and in conference proceedings in his areas of the research interests. He has also been PI or Co-PI for various research projects United States and abroad in power systems analysis and protection, load and energy demand forecasting, renewable energy, microgrids, wave and turbulence, radar and remote sensing, instrumentation, atmosphere physics, electromagnetic compatibility, and engineering education.
Lucian Ionel CIOCA received the M.Sc. in Machine Tools (1993) and B.Sc. in Occupational Safety, Health and Work Relations Management (2010). In 2002, he becomes Dr. Eng. (Ph.D degree) of Petrosani University, Romania and now he is professor at "Lucian Blaga" University of Sibiu - Romania, Faculty of Engineering, Department of Industrial Engineering and Management, Romania. His teaching subjects are Ergonomics, Management, Human Resources Management, Occupational Health and Safety Management, Production Systems Engineering. His research fields of interest are linked with the impact of the knowledge based society upon the social / human dynamics / evolution and the production systems. He regularly publishes and participates on international scientific conferences. Lucian Cioca is the Administrator of the LBUS Department of Consulting, Training and Lifelong Learning, Doctoral Advisor in Engineering and Management, Member of the National Council for Attestation of Academic Titles, Diplomas and Certificates, evaluator ARACIS (The Romanian Agency for Quality Assurance in Higher Education), and other (email: lucian.cioca@ulbsibiu).
The “Smart Grid” concept proposes to move the power system technology to the next level to improve efficiency, reliability, and environmental sustainability. In order to maintain a reliable, robust and secure electricity infrastructure that can meet further demand growth, the electrical grid is evolving toward the future power system, the smart grid, through the increased use of information technology, computing, advanced control, distributed generation, renewable energy, demand-side response, intelligent metering and monitoring, and deployment of the intelligent technologies. Smart grid (SG) concept is also driving many of the current changes in engineering curricula. Present power industry trends, the aging assets and workforce, renewable energy integration, all in the smart grid background, making the discussions around what is expected of the future utility workforce even more complicated. Educators and industry personnel are trying to figure out the answers to these questions and common themes are slowly emerging as there is no definitive consensus on the expected future workforce needs, workforce development and training in the SG inter-disciplinary areas. Existing educational programs and curricula must fit the needs of students, faculty and employers for a workforce that is capable of deploying and operating the smart grid technologies, including measurements, monitoring, communication, computing, control and power electronics make the required education and training even more challenging. Power system operation, analysis and design need to be formulated in a way that is understandable by non-power engineers for better SG development and implementation. To train professionals and students in smart grids, a creative curriculum crossing traditional disciplines is needed. For example, students taking advanced courses in power engineering have an electrical engineering background, as do students in the control systems and telecommunications fields. While students interested in communication networks typically have a computer science or engineering background. This divergence results in many challenges for the coeducation of such professionals and students. We are discussing our approach in the design, development and implementation of an undergraduate course, and the associate laboratory on smart grids. Project challenges include the selection of most appropriate course level, content and topics, textbooks, additional learning materials, laboratory experiments, inclusion or not an end-of-semester project, or field trips, etc. Two fundamental issues characterize smart grid education: multidisciplinary education and integrative nature of the smart grid solutions.
Belu, R. G., & Cioca, L. I. (2016, June), Development and Implementation of an Undergraduate Course on Smart Grids Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26783
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015