Virtual On line
June 22, 2020
June 22, 2020
June 26, 2021
Engineering Technology
Diversity
15
10.18260/1-2--34667
https://peer.asee.org/34667
595
As Professor for Mechanical Engineering Technology at Michigan Technological University, Dr. Irwin teaches courses in Product Design & Development, Statics and Strength of Materials, Parametric Modeling, and Senior Design. Research interests include STEM education, where as PI for Improving Teacher Quality grants (2010 & 2013) he has developed and implemented professional development courses for K-12 science teachers to implement inquiry-based learning while utilizing computer simulations and 3D printing in their classrooms to help solve engineering problems.
David Labyak is an Assistant Professor in the Manufacturing and Mechanical Engineering Technology Department at Michigan Technological University (Michigan Tech), teaching in the area of Solid Mechanics.
Finite Element Analysis (FEA) can be taught as theoretical, application oriented, or preferably as a combination of these. It is beneficial to include a laboratory component dedicated to the application of FEA principles while becoming familiar with the user interface of typical FEA software. This is especially true for an engineering technology curriculum that requires graduates to be familiar with the modern tools used in industry, but is common in engineering curriculum as well. The unique topics examined in this paper are the methods used to teach FEA to develop skills for accurate analysis, physical testing of parts, and reporting results in a format required by industry professionals.
Common modeling errors are another area of focus with FEA, where element selection can greatly affect the outcome of the analysis. Too often, a new analyst will apply meshes to the model without understanding why proper element selection is important. With FE software being easier to use, more and more people will use default elements without understanding how the element behaves. Proper element selection can make a model solve quickly and with a higher degree of accuracy. Improper element selection can affect the solution time and final results.
Reporting FEA results can be taken quite literally by students as merely listing Max Stress and Max Deflection, rather than communicating results as required in industry. Faculty with industry experience at Meritor Simulation and Development Engineering and Great Lakes Sound and Vibration have developed lab reporting requirements that parallel what industry customers require. This paper will detail the requirements and suggest methods used to develop meaningful post processed plots to best visualize results.
The additional laboratory requirement with this particular FEA course requires students to perform some hands-on testing using strain gauge testing for validation of results. The methodology used is to triangulate results from manual calculations, FEA results and physical measurements. A three-point test stand is used to collect data from machined beams of differing cross sections, (I_Beams, C_Beams, Rectangular Beams, Solid and Hollow Beams) that have strain gauges applied. The beam deflection and load applied is also collected in the analysis to make comparisons to the FEA results and manual calculations. Methods of constraining objects in FEA software can result in high stress concentrations that can be explained during this laboratory exercise.
Finally, one could say that skills for accurate analysis only come with many years of experience, although there are teaching methods that help develop a mindset for students. We all have heard of “junk in = junk out” which is a very true saying, but students need to understand what is junk. The theoretical understanding of restricting a body from rigid body motion, which is one of the most common errors in FEA solutions, to the collection of force data used for accurate load applications will be discussed. The assessment results from student self-reflection survey of the industry relevant requirements of this FEA course will be presented along with industry partner feedback.
Irwin, J. L., & Labyak, D. M. (2020, June), FEA Taught the Industry Way Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . 10.18260/1-2--34667
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2020 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015