Vancouver
May 12, 2022
May 12, 2022
May 14, 2022
Conference Submission
9
10.18260/1-2--44723
https://peer.asee.org/44723
146
Kathryn Rupe is an assistant professor of math education at Western Washington University. Previously, she taught middle school math and worked as an instructional coach in Chicago Public Schools for 10 years.
Eric Davishahl serves as professor and engineering program coordinator at Whatcom Community College in northwest Washington state. His current project involves developing and piloting an integrated multidisciplinary learning community for first-year engineering. More general teaching and research interests include designing, implementing and assessing activities for first-year engineering, engineering mechanics, and scientific computing. Eric has been an active member of ASEE since 2001. He was the recipient of the 2008 Pacific Northwest Section Outstanding Teaching Award and currently serves on the ASEE Board of Directors as Zone IV Chair.
This work in progress paper describes ongoing work to understand the ways in which students make use of manipulatives to develop their representational competence and deepen their conceptual understanding of course content. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. Several hands-on activities for engineering statics have been designed and implemented in face-to-face courses since fall 2016. In the transition to online learning in response to the COVID-19 pandemic, modeling kits were sent home to students so they could work on the activities at their own pace and complete the associated activity sheets. An assignment following the vector activities required students to create videotaped or written reflections with annotated pictures using the models to explain their thinking around key concepts. Students made connections between abstract symbolic representations and their physical models to explain concepts such as a general 3D unit vector, the difference between spherical coordinate angles and coordinate direction angles, and the meaning of decomposing a vector into components perpendicular and parallel to a line. The video and written data analyzed to inform the design of think-aloud exercises in one-on-one semi-structured interviews between researchers and students that are currently in progress. This paper presents initial work analyzing and discussing themes that emerged from the initial video and written analysis and plans for the subsequent think-aloud interviews, all focused on the specific attributes of the models that students use to make sense of course concepts. The ultimate goal of this work is to develop some general guidelines for the design of manipulatives to support student learning in a variety of STEM topics.
Rupe, K. M., & Davishahl, E. (2022, May), Categorizing student interactions with manipulatives in statics Paper presented at 2022 ASEE Zone IV Conference, Vancouver. 10.18260/1-2--44723
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2022 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015