Seattle, Washington
June 28, 1998
June 28, 1998
July 1, 1998
2153-5965
5
3.468.1 - 3.468.5
10.18260/1-2--7373
https://peer.asee.org/7373
501
Session 2520
Protecting and Enhancing the M68HC11 for Student Use Henry L. Welch Milwaukee School of Engineering
Abstract
The teaching of microprocessors to undergraduates poses many problems. The least of these, at the introductory level, should be inconsistencies or difficulties in running simple experiments on the microprocessor itself. This paper presents the development efforts at the Milwaukee School of Engineering (MSOE) to develop a modular platform for the teaching of the M68HC11 microprocessor. Central to this is a M68HC11EVB2 trainer board packaged in an attache case with a power supply, a buffering board for protection, and an external development platform that supports access to the ports of the M68HC11 and provides convenient interfaces to common I/O devices. An unique feature of this system is that the buffer board provides transparent buffering of the many bi-directional I/O pins of the M68HC11. The effects of using this new system will be examined with emphasis on repair and replacement of damaged units. Additionally the efforts to adapt a M68HC11EVB board to this system will be presented.
Introduction
There is no question that we are firmly implanted into the era of the computer. It is almost impossible to by any type of electrical consumer product that does not contain at least one microprocessor. This runs the gamut from products as simple as toasters to as complex as the automobile. Consequently it is becoming more important for engineers, in all fields, to have at least a passing knowledge of microprocessors and embedded systems. This is no more evident than in the curriculums at MSOE. Not only are embedded systems taught throughout the computer engineering curriculum (from assembly language in the sophomore year to their role in networks in their senior year) but they also play a prominent role in the sophomore year of our electrical engineering and electrical engineering technology programs as well as service roles in the mechanical engineering (junior) and mechanincal engineering technology (sophomore) programs. The requires a significant investement in infrastructure. This paper will discuss the goals of the MSOE development of this infrastructure and examine its success. It will also discuss our efforts to adapt this infrastructure to changing microprocessor boards.
Goals
Due to the varied nature of MSOE's courses in microprocessors and embedded systems, we set the following goals for our development platform.
1) Readily portable - ideally the platform should consist of very few parts/pieces 2) Usable with any PC - this simplifies scheduling of courses between any of various PC labs
Welch, P. D. H. L. (1998, June), Protecting And Enhancing The M68 Hc11 For Student Use Paper presented at 1998 Annual Conference, Seattle, Washington. 10.18260/1-2--7373
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 1998 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015