conference held by the NSF Engineering Directorate and the ADVANCE program. 3. Is currently participating in a dissemination project funded by the National Science Foundation to produce publications titled “A Dean’s Guide to Diversity” and a “Department Head’s Guide to Diversity.” 4. Has hired a full-time program coordinator to handle K-12 outreach, including specific outreach to girls.The mentoring program is a centerpiece of the retention effort at NMSU. As mentioned earlier,women are less likely than men in academia to receive mentoring as they progress throughgraduate school and then assume jobs in academia or industry12. Women’s Studies programs anduniversity commissions on the status of women have long
exercises in very large sections (200 to 300students).6 Classroom selection for such a session should take into consideration the classroomfurnishings. Anchored seating could be workable as long as adequate table space is availableand students can cluster quickly into teams. However, in large lecture halls with theater seatingand very small pull-up desks, students will have difficulty just physically gathering into teams,and that translates to wasted class time. Team assignments for these in-class activities can be accomplished in various ways. Thecritical issue here is to guard vigilantly against lost class time. If you have established teams forother, longer duration projects, you might consider using those established teams for the hands
DELIBERATE LONGITUDINAL CURRICULAR INTEGRATION: TOPICAL LINKAGES AND CONCEPT REINFORCEMENT Barry L. Shoop, George A. Nowak, and Lisa A. Shay United States Military Academy, Department of Electrical Engineering and Computer Science, West Point, New York, 10996 U.S.A. email: Barry.Shoop@usma.eduAbstract. Students in many engineering programs feel that their educational experience consists of a series of isolated courses that build expertise in discrete topical areas. The only time these discrete topics are integrated is in a capstone engineering project during their senior year. Understanding how topics covered in one
governed by a nonlinear differential equation(s). This situation often occurs whenstudents are assigned design projects, or more importantly when students practice engineering inindustry after graduation. Students are taught, in a series of dynamics courses, how to derive theequation of motion of a dynamic system whose resulting differential equation can be linear ornonlinear. At the same time, students these days are taught such that they are capable of usingthe above mentioned NAS to solve differential equations, even though their usage is mostlyfocused on solving ordinary linear differential systems. For most undergraduate mechanicalengineering students, who have no experience with the complex nature of nonlinear dynamicsystems, numerical