Purdue. Her current capacity is as Recruitment and Retention Data Analyst for the Minority Engineering Program at Purdue, where she aids the organization assisting historically underrepresented groups of students in engineering. Her work with the Rising Scholar NSF S-STEM program includes the collection, analysis, and management of the data pertaining to the outreach, recruitment, retention and graduation of the Rising Scholars students, as well as serving as the program interface with the under- graduate participants.Dr. Robert Merton Stwalley III P.E., Purdue University at West Lafayette (COE) Dr. Robert M. Stwalley III, P.E. joined the Agricultural & Biological Engineering department as a faculty member in the
met with the class during one semester of school for a total of 21,90-minute class periods over the course of 13 weeks. Lessons and activities took place within thestudent’s regular classroom and a multi-use lab space adjacent to the classroom. All students (n =24 students) enrolled in the class were included in the outlined intervention, but in line with thenature of this work in progress, the preliminary data presented here includes informationdetailing only one student, Jamie (pseudonym used for student’s privacy).Prior to beginning the intervention, a modified version of the Student Attitudes toward STEMsurvey (S-STEM) [1] was created. The S-STEM survey, which collects student data related tothoughts and feelings regarding STEM (Science
Cybersecurity.2.0 BackgroundThe two-fold goal of the NSF Division of Undergraduate Education (DUE) S-STEM fundedAttracting and Cultivating Cybersecurity Experts and Scholars through Scholarships (ACCESS)program is: (1) to increase cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need (including women andminorities) and (2) to generate knowledge about academic success, retention, persistence,graduation, and career pathways of these students to improve the education of futureCybersecurity-related STEM workers. Specifically, ACCESS aims to contribute towardsaddressing the tremendous governmental and industry need for highly skilled cybersecurityexperts by addressing the following
majority of lab experience in LU’s IE curriculum occursduring the first two years in chemistry and physics that is not part of the 2+2 online program.After the 2nd year, a single weekend lab is used for our material process lab where studentsmake a hammer in our machine shop. The Work Design lab is mostly observational studies thatcan be conducted offsite. Computer aid manufacturing and automation labs are software based.Another challenge is students having consecutive multi-semester internship, co-ops and full-timeemployment where they take classes part time that extends the average time to graduation andcomplicates reporting program effectiveness including NSF S-STEM grant effectiveness. Highperforming students tend to take longer than 4 years
andjunior years responded to a semi-structured list of questions through focus group participation,with some individual follow-up interviews. Sophomore experiences were examined in theacademic year 2018-2019, while the experiences of primarily junior participants were capturedin 2019-2020. Themes from data analysis of the qualitative responses were developed. The workdraws from a larger investigation conducted under an NSF S-STEM award.BackgroundRedShirt Programs and the Consortium ModelThe Redshirt in Engineering Consortium was established in 2016 with funding from an NSF S-STEM award (#1564494) to bring together six universities in the Midwest and West working toimprove the success of students from low-income backgrounds. Beginning with three
recruitment and retention ofstudents to the Engineering Technology (ET) programs within the College of EngineeringTechnology (CET) at the Rochester Institute of Technology (RIT). This project is funded by aNational Science Foundation Scholarships in Science Technology & Math (S-STEM; NSFAward No. 1930313) awarded in 2020. The SD-COMETS program is a comprehensive programaimed at increasing enrollment of economically disadvantaged, academically talented students inET academic programs at RIT, with targeted recruitment of underrepresented groups. The projectis designed to increase first and second year persistence, known to be the critical years for degreecompletion. Using a research based approach, factors in the engineering education
Department of Technology and Society. She is currently the Assistant Director of STEM Smart programs, which include programs S-STEM ASSETS, LSAMP, and NASA NY Space Grant. Lauren has had the opportunity to participate in many professional development programs, such as the first cohort of the Research Foundation Leadership Academy, and Research Foundation Mentoring Program. Lauren received her Master of Arts in Higher Education Ad- ministration from Stony Brook University in May 2017. Her current research analyzes the gender equity in higher education, with a focus of females in STEM. With her research background, Lauren is a Women in Science and Engineering (WISE) affiliated member, and instructs the course, Society and
multiple“layers”, including senior mentors, graduate students, and faculty. A majority, but not all, of thepeer mentors and mentees are recipients of scholarship funds from a NSF S-STEM grant.The researchers focus on the peer mentorship component of the ELC program as a critical andcatalyzing practice that promotes STEM identity, which is corelated with academic success andretention. Furthermore, the relational and communal aspects of the mentorship program areposited as particularly critical supports in context of the global pandemic. The researchershypothesize that participation in the LMP will be correlated with improvements in studentretention and academic performance, and that there will be a change in students’ STEM identityas they progress
computing. She is currently involved with an NSF-funded S-STEM project that awards scholarships to students studying computing at USF. The project implements a suite of community- building activities designed to improve scholars’ self-efficacy and develop computing identity. Sami also co-directed a project that developed system support and user-driven strategies for improving energy effi- ciency in residential buildings. Sami has served in a number of service roles at USF and in her professional community. She was chair of the Computer Science department at USF from 2013-2016. She also served on the editorial board of Sigmobile’s GetMobile Magazine from 2014-2018. She has been involved with the discipline-specific
be close to initial expectations and the game was able to be played at a distancesuitable for a fun experience. This project was a success and student commented “I made anembedded systems laser tag system for my senior design project. I was able to apply what Ilearned in my engineering courses to achieve my design goals. I was able to combine suchsubjects as digital design, embedded systems, electronic systems, digital signals processing, andphysics. I also honed practical skills like soldering, putting together breadboards andprogramming in C. My professor helped me maintain a disciplined schedule to make sure Istarted early on prototypes so my final design would meet my goals”.This project was funded by NSF S-STEM Scholarship program at
Minority Participa- tion (SUNY LSAMP) and the $1 million S-STEM Scholarship Academic and Social STEM Excellence for Transfer Students (ASSETS) programs. These NSF sponsored programs help low-income, and under- represented minority students persist and succeed in STEM majors and careers. Dr. Woodson received his B.S.E in electrical engineering from Princeton University and his Ph.D. in Public Policy for the Georgia Institute of Technology (Georgia Tech).Ms. Rachel Faye Perlman, Stony Brook University Rachel is a PhD candidate in the Interdepartmental Doctoral Program in Anthropological Sciences at Stony Brook University. Outside of her research, she is devoted to accessibility in STEM higher educa- tion. She has
Students1.0 IntroductionThe Academy of Engineering Success (AcES) program, founded in 2012 and operating withNSF S-STEM funding since 2016, implements literature-based strategies to support and retainunderprepared (non-calculus-ready) and underrepresented first-time, full-time undergraduatestudents in engineering with the goals of increasing the number of graduating engineers anddiversifying the engineering workforce [1], [2]. A total of 71 students, including 21 studentssupported by renewable S-STEM scholarships, participated in the AcES program between 2016and 2019 in the Fundamentals of Engineering Program of the Benjamin M. Statler College ofEngineering and Mineral Resources at West Virginia University, a large R1 institution in themid-Atlantic
study is informed by the need to address the well-documentedunderrepresentation of low-socioeconomic status (SES) and minoritized students in engineeringand other related careers [1]–[3]. Researchers advanced that, in addition to intellectual andscientific reasons, low-income students are attracted to the major by the potential prospect ofemployment after completing a degree [1], [4]. Financial considerations are critical for low-SESengineering students; this includes considerations of financial aid and differential tuition [5].Programs such as the National Science Foundation Scholarships in STEM (S-STEM) have beenimplemented to address financial assistance of low-SES students. This study is part of alongitudinal five-year S-STEM project
assistance until this goal was met. Prior to proposal development, each KickStarterteam performed a STEM-self assessment and developed a STEM plan, out of which researchproposal concepts were identified and matched to the appropriate NSF program, e.g. S-STEM,ATE, and later HSI. In 2016, HSIs in KickStarter cohorts began to acquire grant awards, initiallyin S-STEM and ATE. When the HSI program solicitation was announced, HSIs in KickStarterbegan switching from pursuing the Small Grants for Institutions New to the ATE Program trackto the equivalent track in the HSI program, quite successfully. A total of eleven HSI awardswere earned by 2-year HSIs participating in KickStarter for an 85% award rate. In 2019 theKickStarter program ended and no new
Paper ID #32880Deanna Craig, Clemson University Civil Engineering Clemson University 2021 graduate American c Society for Engineering Education, 2021 Implementation of a Guided Mentorship Program in a STEM Community of Practice at a Two-Year CollegeAbstractCommunities of Practice (CoP) have become powerful models for facilitating social learning inhigher education. The Engineering Scholars Program (ESP), funded by an NSF Scholarships inScience, Technology, Engineering and Mathematics (S-STEM) grant, is a CoP designed toenhance the social learning experience of two-year college students preparing to transfer to a four-year university. A key feature of
the Rising Scholar NSF S-STEM program in the Summer of 2017 as a Graduate Research Assistant. She completed her Bachelor of Science degree at Purdue University in Agricultural and Biological Engineering (ABE) with a focus in Environment and Natural Resources Engineering. She has worked with the Rising Scholars’ Program during the completion of her Master of Science in Agricul- tural and Biological Engineering and into her current Ph.D. program at Purdue University also in ABE. As part of the Rising Scholars’ program, she has helped plan and organize the student recruitment events, align students with summer research experiences and faculty mentors, and conduct student interviews for program analysis and evaluation
participants, ten have transferred intoengineering majors at four-year universities (43%), two have transferred into other STEM majors(9%), eight continue to take transfer preparatory courses at CCC (35%), and the educationalstatus of three students is unknown (13%). Anecdotally, several of the transferred students haveindicated that they continued to seek out research opportunities after transferring.AcknowledgementsThis material is based on work supported by the National Science Foundation S-STEM GrantNumber 1564587 and by the University of California at Davis AvenueE program.References[1] L. Fleming, K. Engerman, and D. Williams, “Why Students Leave Engineering: TheUnexpected Bond,” in 2006 Annual Conference & Exposition, Chicago, Illinois, USA
. She received undergraduate and graduate degrees in mechanical engineering from Duke and NC State, respectively. Her research interests include engineering education and precision manufacturing. American c Society for Engineering Education, 2021 Use of Personas in Rating Scholarship ApplicationsIntroductionThis evidence-based practice paper introduces a method for creating subjective, holistic rubricsbased on the human-centered design concept of personas. It can be difficult to align assessmentmetrics with subjective artifacts, especially when the goal of the artifact itself is subjective. Thefaculty team who collaborated on an NSF S-STEM project faced
, marketing strategy, marketing, and public pol- icy. She has published research in Organization Science, International Journal of Engineering Education, Educational Philosophy and Theory, and Journal of Business & Management. She employs project-based learning and multi-method research in many of her courses. American c Society for Engineering Education, 2021 Developing Intrapreneurship in the Next Generation of Engineering Innovators and LeadersabstractThis National Science Foundation Scholarships in STEM (S-STEM) project responds to agrowing disparity among technology firms and the number of under-represented people inmanagerial and
andmodel behaviors that promote a successful college career. Connecting Mentor Partners forAcademic Success in STEM (CoMPASS) is an NSF S-STEM scholarship program developed tocreate a pathway to guide first generation students from the X Public School District to developtheir social capital through intentional mentoring throughout their first year experience at XUniversity and beyond. The multilayered mentoring approach introduced distinctive campusmentors embedded within scheduled programming to align with the student’s first yearexperience. The CoMPASS program began with virtual sessions in spring 2020 as students’ firstinteraction with the campus support network after CoMPASS scholars were accepted into theinstitution, but before they
a loose relationship with connections established by individual faculty orstaff members without formal ties. These individual connections have now grown to includesignificant National Science Foundation (NSF) scholarships in science, technology, engineering,and mathematics (S-STEM) grant known as Engineering Neighbors: Gaining Access, GrowingEngineers (ENGAGE). This creates a partnership between the institutions to support studentsuccess through pre-transfer, during transfer, and post-transfer stages. This is done byminimizing economic barriers and supporting student development in five areas: academic,engineering transfer/career path, personal, connection, and professional. ENGAGE is alsodesigned to create sustainable change so that our
the American Educational Research Association and American Evaluation Association, in addition to ASEE. Dr. Brawner is also an Exten- sion Services Consultant for the National Center for Women in Information Technology (NCWIT) and, in that role, advises computer science and engineering departments on diversifying their undergraduate student population. She remains an active researcher, including studying academic policies, gender and ethnicity issues, transfers, and matriculation models with MIDFIELD as well as student veterans in engi- neering. Her evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Mr. Russell Andrew Long
Consultant for the National Center for Women in Information Technology (NCWIT) and, in that role, advises computer science and engineering departments on diversifying their undergraduate student population. She remains an active researcher, including studying academic policies, gender and ethnicity issues, transfers, and matriculation models with MIDFIELD as well as student veterans in engi- neering. Her evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Dr. Rebecca Brent, Education Designs, Inc Rebecca Brent is President of Education Designs, Inc., a consulting firm located in Chapel Hill, N.C. She is a certified program evaluator and a faculty
paperreviews the findings from the subset of longitudinal data to add to the literature related to thisinstrument and to gather feedback related to future directions for this project.BackgroundThe Campbell University’s School of Engineering is able to offer students need-basedscholarships through an NSF S-STEM grant. As part of this program, students are expected totake part in a variety of professional development activities including faculty and peermentoring, industry tours, tutoring, and internship preparation assistance. This institution islocated in a rural area with many first-generation college students in the engineering studentpopulation. The institution also accepts many students into the engineering program who mayneed an additional
Paper ID #32783Work-in-Progress: Social and Cultural Activities Integrated into an REUSite in the U.S. SouthDr. Todd Freeborn, University of Alabama Todd Freeborn is an Assistant Professor in Electrical and Computer Engineering (ECE). He regularly teaches courses in circuit analysis, circuit networks, and microcomputers. Through NSF funding, he has coordinated REU Sites for engineering students to explore renewable resources and speech pathology. He is also the coordinator for an NSF S-STEM program to prepare students for gateway courses across different disciplines of engineering to support and retain students in
the Professoriate (AGEP) Alliance for Diversity and Strengths of STEM Faculty: A Culturally-Informed Strengths-Based Approach to Advance Early-Career Faculty Success. Dr. Almeida is also Co-Principal Investigator for the NSF Scholarships in Science, Technology, Engineering & Mathematics (S-STEM) grant, Engineering Neighbors: Gaining Access Growing Engineers (ENGAGE). Dr. Almeida’s graduate training is in Urban Education Policy – Higher Education from the University of Southern California.Dr. John Y. Oliver, California Polytechnic State University, San Luis Obispo Dr. Oliver is a professor of Electrical Engineering and Computer Engineering at Cal Poly, San Luis Obispo. His field of expertise is in computer
evaluative needs and expectations of federally funded grants with regard to accountability and compliance. In addition, she has served as a panel reviewer for NSF proposals for S-STEM and other EHR programs, GAANN, SIP, and EOC with the USDOE, and is currently an AQIP Reviewer and Peer Reviewer for the NCA Higher Learning Commission. As an administrator, Gwen has served Director of Assessment for 6 years and Executive Assistant to the President for one year at Rose-Hulman Institute of Technology. She has also served as Assistant to the President and Provost for Special Projects at a Old Dominion University. Her experience as a Commissioner on the Indiana Commission for Higher Education has allowed her to embrace a
engineering, highway design. engineering management, geographic information systems, and land surveying. He has served in numerous leadership positions in ITE, ASCE and TRB. American c Society for Engineering Education, 2021 Impact of Calculus Peer Mentoring on Leadership Development and Math Self-EfficacyIntroductionPilot ExCEL Calculus SequenceWe have recently piloted a three-semester Calculus experience for scholars in the Excellence inCivil Engineering Leadership (ExCEL) program, which is sponsored through a National ScienceFoundation (NSF) Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant. The goal of the ExCEL
students (S-STEM), Researcher Practitioner Partnership (RPP), IUSE, and EAGER.Alexandria Benedict, University of North Carolina at Charlotte Alexandria Benedict is a graduate student at the University of North Carolina at Charlotte pursuing her Master’s in Computer Science. She is a research assistant under the RPP STEM Ecosystem Project which helps study the effects of computational thinking inside classrooms.Audrey RorrerDr. David K. Pugalee, University of North Carolina at Charlotte Dr. David Pugalee is a full professor, and Director of the Center for Science, Technology, Engineering, and Mathematics Education (STEM) at UNC Charlotte. The recipient of millions of dollars in grant- funding, Dr. Pugalee has also
Oxford, UK. Professor Zilouchian is senior member of several professional societies including Tau Beta Pi, Sigma Xi, Phi Kappa Phi, ASEE and IEEE.Dr. Nancy Romance , Florida Atlantic University Dr. Romance is Professor of Science/Engineering Education and Director of FAU’s STEM Collaborative. She is currently PI on the Title III Hispanic Serving Institution STEM Articulation grant and Co-PI on the College of Engineering and Computer Science’s NSF S STEM grant guiding engineering majors toward completion of a MS degree in Artificial Intelligence. Her work is focused extensively on science and engi- neering activities to promote enhanced classroom engagement of students and increased discipline-based educational